FK506 (tacrolimus) is a secondary metabolite with a potent immunosuppressive activity, currently registered for use as immunosuppressant after organ transplantation. FK506 and FK520 are biogenetically related natural products that are synthesized by combined polyketide synthase/nonribosomal peptide synthetase systems. The entire gene cluster for biosynthesis of FK520 from Streptomyces hygroscopicus var. ascomyceticus has been cloned and sequenced. On the other hand, the FK506 gene cluster from Streptomyces sp. MA6548 (ATCC55098) was sequenced only partially, and it was reasonable to expect that additional genes would be required for the provision of substrate supply. Here we report the identification of a previously unknown region of the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 containing genes encoding the provision of unusual building blocks for FK506 biosynthesis as well as a regulatory gene. Among others, we identified a group of genes encoding biosynthesis of the extender unit that forms the allyl group at carbon 21 of FK506. Interestingly, we have identified a small independent diketide synthase system involved in the biosynthesis of the allyl group. Inactivation of one of these genes, encoding an unusual ketosynthase domain, resulted in an FK506 nonproducing strain, and the production was restored when a synthetic analog of the allylmalonyl-CoA extender unit was added to the cultivation medium. Based on our results, we propose a biosynthetic pathway for the provision of an unusual five-carbon extender unit, which is carried out by a novel diketide synthase complex.FK506 (tacrolimus) and its structural analogs FK520 (ascomycin) and rapamycin (sirolimus) are secondary metabolites belonging to a class of macrolactone compounds of great medicinal importance. They are currently registered for use as immunosuppressants after organ transplantation as well as for treatment of inflammatory skin diseases and eczema (1-3). In recent clinical studies, these compounds have also shown great promise for treatment of various forms of cancer, as well as for neurological disorders (4, 5). FK506 and FK520 are biogenetically related natural products that are synthesized by combined polyketide synthase (PKS) 2 /nonribosomal peptide synthetase systems. The allyl group at carbon 21 of FK506 is replaced by an ethyl group in FK520, this being the only structural difference between the FK506 and FK520 compounds (see Fig. 1). A common feature of these complex polyketides is the involvement of large polyfunctional polyketide synthases comprising multifatty acid synthase-like domains arranged in sets of modules (6). Each module is responsible for the recognition and incorporation of a specific carboxylic acid-derived extender unit into the growing polyketide chain as well as for subsequent reductive reactions (7,8). Compounds such as FK506/520 and rapamycin are formed by incorporation of lysine-derived pipecolic acid by the nonribosomal peptide synthase-like domain through the cyclization step, resulting in the fo...
Rapamycin is an important macrocyclic polyketide produced by Streptomyces hygroscopicus and showing immunosuppressive, antifungal, and antitumor activities as well as displaying anti-inflammatory and neuroregenerative properties. The immense pharmacological potential of rapamycin has led to the production of an array of analogues, including through genetic engineering of the rapamycin biosynthetic gene cluster. This cluster contains several putative regulatory genes. Based on DNA sequence analysis, the products of genes rapH and rapG showed high similarities with two different families of transcriptional activators, LAL and AraC, respectively. Overexpression of either gene resulted in a substantial increase in rapamycin biosynthesis, confirming their positive regulatory role, while deletion of both from the chromosome of S. hygroscopicus resulted in a complete loss of antibiotic production. Complementation studies indicated an essential role of the RapG regulator for rapamycin biosynthesis and a supportive role of RapH. A direct effect of rapH and rapG gene products on the promoter of the rapamycin polyketide synthase operon, rapA-rapB, was observed using the chalcone synthase gene rppA as a reporter system.
BackgroundFK506 (Tacrolimus) is an important immunosuppressant, produced by industrial biosynthetic processes using various Streptomyces species. Considering the complex structure of FK506, it is reasonable to expect complex regulatory networks controlling its biosynthesis. Regulatory elements, present in gene clusters can have a profound influence on the final yield of target product and can play an important role in development of industrial bioprocesses.ResultsThree putative regulatory elements, namely fkbR, belonging to the LysR-type family, fkbN, a large ATP-binding regulator of the LuxR family (LAL-type) and allN, a homologue of AsnC family regulatory proteins, were identified in the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488, a progenitor of industrial strains used for production of FK506. Inactivation of fkbN caused a complete disruption of FK506 biosynthesis, while inactivation of fkbR resulted in about 80% reduction of FK506 yield. No functional role in the regulation of the FK506 gene cluster has been observed for the allN gene. Using RT-PCR and a reporter system based on a chalcone synthase rppA, we demonstrated, that in the wild type as well as in fkbN- and fkbR-inactivated strains, fkbR is transcribed in all stages of cultivation, even before the onset of FK506 production, whereas fkbN expression is initiated approximately with the initiation of FK506 production. Surprisingly, inactivation of fkbN (or fkbR) does not abolish the transcription of the genes in the FK506 gene cluster in general, but may reduce expression of some of the tested biosynthetic genes. Finally, introduction of a second copy of the fkbR or fkbN genes under the control of the strong ermE* promoter into the wild type strain resulted in 30% and 55% of yield improvement, respectively.ConclusionsOur results clearly demonstrate the positive regulatory role of fkbR and fkbN genes in FK506 biosynthesis in S. tsukubaensis NRRL 18488. We have shown that regulatory mechanisms can differ substantially from other, even apparently closely similar FK506-producing strains, reported in literature. Finally, we have demonstrated the potential of these genetically modified strains of S. tsukubaensis for improving the yield of fermentative processes for production of FK506.
The production of epothilone mixtures is a direct consequence of the substrate tolerance of the module 3 acyltransferase (AT) domain of the epothilone polyketide synthase (PKS) which utilises both malonyl- and methylmalonyl-CoA extender units. Particular amino acid motifs in the active site of AT domains influence substrate selection for methylmalonyl-CoA (YASH) or malonyl-CoA (HAFH). This motif appears in hybrid form (HASH) in epoAT3 and may represent the molecular basis for the relaxed specificity of the domain. To investigate this possibility the AT domains from modules 2 and 3 of the epothilone PKS were examined in the heterologous DEBS1-TE model PKS. Substitution of AT1 of DEBS1-TE by epoAT2 and epoAT3 both resulted in functional PKSs, although lower yields of total products were observed when compared to DEBS1-TE (2% and 11.5% respectively). As expected, epoAT3 was significantly more promiscuous in keeping with its nature during epothilone biosynthesis. When the mixed motif (HASH) of epoAT3 within the hybrid PKS was mutated to HAFH (indicative of malonyl-CoA selection) it resulted in a non-productive PKS. When this mixed motif was converted to YASH (indicative of methylmalonyl-CoA selection) the selectivity of the hybrid PKS for methylmalonyl-CoA showed no statistically significant increase, and was associated with a loss of productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.