Histone/protein deacetylases (HDACs) regulate chromatin remodeling and gene expression as well as the functions of more than 50 transcription factors and nonhistone proteins. We found that administration of an HDAC inhibitor (HDACi) in vivo increased Foxp3 gene expression, as well as the production and suppressive function of regulatory T cells (T(reg) cells). Although T(reg) cells express multiple HDACs, HDAC9 proved particularly important in regulating Foxp3-dependent suppression. Optimal T(reg) function required acetylation of several lysines in the forkhead domain of Foxp3, and Foxp3 acetylation enhanced binding of Foxp3 to the Il2 promoter and suppressed endogenous IL-2 production. HDACi therapy in vivo enhanced T(reg)-mediated suppression of homeostatic proliferation, decreased inflammatory bowel disease through T(reg)-dependent effects, and, in conjunction with a short course of low-dose rapamycin, induced permanent, T(reg)-dependent cardiac and islet allograft survival and donor-specific allograft tolerance. Our data show that use of HDACi allows the beneficial pharmacologic enhancement of both the numbers and suppressive function of Foxp3(+) T(reg) cells.
Ubiquitin is a 76-residue protein highly conserved among eukaryotes. Conjugation of ubiquitin to intracellular proteins mediates their selective degradation in vivo. We describe a family of four ubiquitin-coding loci in the yeast Saccharomyces cerevisiae. UBIJ, UBI2 and UBI3 encode hybrid proteins in which ubiquitin is fused to unrelated ('tail') amino acid sequences. The ubiquitin coding elements of UBIJ and UBI2 are interrupted at identical positions by non-homologous introns. UBIJ and UBI2 encode identical 52-residue tails, whereas UBI3 encodes a different 76-residue tail. The tail amino acid sequences are highly conserved between yeast and mammals. Each tail contains a putative metal-binding, nucleic acid-binding domain of the form Cys-X2-4-Cys-X2_15-Cys-X2-4-Cys, suggesting that these proteins may function by binding to DNA. The fourth gene, UBI4, encodes a polyubiquitin precursor protein containing five ubiquitin repeats in a head-to-tail, spacerless arrangement. All four ubiquitin genes are expressed in exponentially growing cells, while in stationary-phase cells the expression of UBIJ and UBI2 is represed. The UBI4 gene, which is strongly inducible by starvation, high temperatures and other stresses, contains in its upstream region strong homologies to the consensus 'heat shock box' nucleotide sequence. Elsewhere we show that the essential function of the UBI4 gene is to provide ubiquitin to cells under stress.
Although certain chemokines and their receptors guide homeostatic recirculation of T cells and others promote recruitment of activated T cells to inflammatory sites, little is known of the mechanisms underlying a third function, migration of Foxp3+ regulatory T (T reg) cells to sites where they maintain unresponsiveness. We studied how T reg cells are recruited to cardiac allografts in recipients tolerized with CD154 monoclonal antibody (mAb) plus donor-specific transfusion (DST). Real-time polymerase chain reaction showed that intragraft Foxp3 levels in tolerized recipients were ∼100-fold higher than rejecting allografts or allografts associated with other therapies inducing prolonged survival but not tolerance. Foxp3+ cells were essential for tolerance because pretransplant thymectomy or peritransplant depletion of CD25+ cells prevented long-term survival, as did CD25 mAb therapy in well-functioning allografts after CD154/DST therapy. Analysis of multiple chemokine pathways showed that tolerance was accompanied by intragraft up-regulation of CCR4 and one of its ligands, macrophage-derived chemokine (CCL22), and that tolerance induction could not be achieved in CCR4−/− recipients. We conclude that Foxp3 expression is specifically up-regulated within allografts of mice displaying donor-specific tolerance, that recruitment of Foxp3-expressing T reg cells to an allograft tissue is dependent on the chemokine receptor, CCR4, and that, in the absence of such recruitment, tolerizing strategies such as CD154 mAb therapy are ineffectual.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.