Iron oxide/titania composites were synthesized by precipitation method. Amount of iron oxide was varied in the composites. The single phase (anatase) was obtained for the weight ratio of 0-20% and three phases (anatase, magnetite and hematite) were found for the weight ratio of 30% and 40% of iron oxide. The crystallite size of titania decreased with increasing of iron oxide content. The specific surface area, total pore volume and BJH pore volume of the sample increased with increasing iron oxide content in the composite. The composites possessed mesoporous characteristic (6.5-9.6 nm in pore diameter) and exhibited ferromagnetic properties. The measurement of the microwave absorption showed that the 40Fe/Ti composite had the best reflection loss of -14 dB at a frequency of 10.9 GHz. This meant that the electromagnetic wave was absorbed 80% in that frequency. Thus, the developed material can be a promising microwave absorbing agent in radar signature reduction.
The weak ferromagnetic property and the electromagnetic waves absorption characteristic of La(1-x)BaxMnO3 (LBMO) compounds have been investigated. The samples of LBMO that are LaMnO3 (S0), La0.9Ba0.1MnO3 (S1); La0.8Ba0.2MnO3 (S2); and La0.7Ba0.3MnO3 (S3) were synthesized using high energy milling (HEM) method. Samples were characterized by means of XRD (X-ray diffractometer), HRPD (high-resolution powder neutron diffractometer), EDS (energy dispersive X-ray spectroscopy, VSM (vibrating sample magnetometer), and VNA (vector network analyzer). There is no magnetic ordering of ferromagnetic in S1 and S2 samples due to the Ba occupation factors of both less than 0.2. The Ba content in the S3 sample is greater than 0.2, hence the ferromagnetic property of the compound is not so visible with the VSM as well as the VNA. The absorption characteristics of electromagnetic waves using VNA indicated that there is an absorption of EM waves in the frequency range between 8-12 GHz with almost the same peak frequency for all four samples at 10.8 GHz with the absorption of around 5 dB. The existence of a weak ferromagnetic property can be detected clearly using HRPD. Neutron diffraction as a probe can observe the magnetic structure accurately even in a material having a weak ferromagnetic property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.