Knowledge of groundwater recharge and apparent age constitutes a valuable tool for its sustainable management. Accordingly, shallow groundwater (n = 72) in the Ndop plain has been investigated using the stable isotopes of oxygen ( 18 O) and hydrogen ( 2 H or D) and tritium ( 3 H) to determine the recharge process, timing and rate of recharge, and residence time. The shallow groundwater showed low variability in d18 O values (-2.7 to -4.1 %) and 3 H content (2.4-3.1 TU). The low variability suggests a similar origin, homogenous aquifer, good water mixing and storage capacity of the groundwater reservoir. Like surface water, a cluster of groundwater along the Ndop Meteoric Water Line (NMWL) and Global Meteoric Water Line indicates meteoric origin/recharge. The rainfall recharge occurs under low relative humidity conditions and negligible evaporation effect. About 80 % of the recharge is from direct heterogeneous/diffuse local precipitation at low altitude (\1,260 m) within the Ndop plain. Approximately 20 % is from high altitude precipitation (localised recharge) or is recharged by the numerous inflowing streams and rivers from high elevations. A homogenous cluster of d-values in groundwater (and surface water) between May and June monsoon rains on the NMWL suggests dominant recharge during these months. The recharge represents at least 16 % ([251 mm) of the annual rainfall (1,540 mm) indicating high annual recharge; high enough for development of the groundwater resource for agriculture. The 3 H content ([2.4 TU) in groundwater indicates post-1952 recharged water with an estimated residence time \30 years, suggesting short subsurface circulation, and subsequently a renewable aquifer.
The link between rainfall and groundwater recharge in the Rio del Rey Basin, which is of socio-economic importance to Cameroon, is poorly understood. Accordingly, the stable isotopes in monthly rainfall from January to December 2012 (in Lobe and Mundemba) and 52 surface water and groundwater samples were investigated. High values of δ18O and δD were recorded in the dry period (February to March), and the least values of δ18O and δD were observed in the wet period (September). This indicates that different condensation processes primarily influenced stable isotopes in rainfall as a function of the difference in moisture sources. The relationship between δD and δ18O defined the Lobe meteoric water line as δD = 7.97 δ18O + 12.48 and Mundemba water line as δD = 7.75 δ18O + 10.79. The similarity of their slopes to the global meteoric line suggests that the isotopic composition of investigated rains was not significantly affected by evaporation during precipitation. The ranges in deuterium-excess of precipitation from 5.8 to 16.56‰ suggest the source of vapour is from the Atlantic Ocean. The groundwater isotope values (ranging from −3.81 to −2.52‰ for δ18O) plotted close to and along the GMWL, showing that its isotopic composition is of meteoric origin under rapid recharge conditions. The isotopic similarity between groundwater and June–August rains suggests a significant recharge during this period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.