Green delivery carriers of nanopesticides, like sophorolipid biosurfactants, are of great significance to reduce environmental pollution and promote sustainable agricultural development. However, the molecular diversity of an unisolated sophorolipid mixture with almost unpredictable self-assembly properties has limited the in-depth study of its structure−activity relationship and hindered the development of green pesticide delivery systems. In this work, the acidic and lactonic sophorolipids were successfully separated from the sophorolipid mixture through silica gel column chromatography. A series of cost-effective green nanopesticides loaded with lambda-cyhalothrin (LC) were rapidly fabricated based on a combination of the acidic and lactonic sophorolipids as surfactants by flash nanoprecipitation. The effects of the acidic-to-lactonic ratio on particle size, drug loading capacity, and biological activity against Hyphantria cunea of LC-loaded nanoparticles were systematically investigated. The resultant nanopesticides exhibited a better insecticidal efficacy than a commercial emulsifiable concentrate formulation. This work opens up a novel strategy to construct scalable, cost-effective, and environmentally friendly nanopesticide systems.
Distinct platinum (Pt) nanozymes as peroxidase mimics have received extensive interest owing to their outstanding catalytic activity, high environmental tolerance, lower consumption, and great potential in replacing natural enzymes. However, easy agglomeration of Pt nanoparticles (Pt NPs) resulting from the high surface free energy significantly decrease their peroxidase-like activity. Herein, spherical polyelectrolyte brush (SPB)-stabilized ultrasmall Pt NPs (SPB@Pt NPs) were prepared by a novel synthetic strategy where the SPB not only performed as a nanoreactor for the synthesis of ultrasmall Pt NPs but also greatly stabilized Pt NPs against aggregation. The well-defined SPB@Pt NP nanozymes exhibited outstanding peroxidase-like activity for the catalytic oxidation of colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to blue oxidized TMB and were then used to establish a colorimetric sensor for rapid detection of cysteine, giving a limit of detection of 0.11 μM. Moreover, the colorimetric detection system was demonstrated with outstanding performance in sensitive and selective detection of cysteine in the presence of several interference molecules. From these results, SPB@Pt NPs have been regarded as promising peroxidase mimics for a large number of applications such as in biosensing, biomedicine, the food industry, and environmental chemistry.
Nanosized gold nanoparticles (AuNPs) are of great interest in areas such as catalysts or imaging but are easy to aggregate due to high surface activity. To stabilize AuNPs, two approaches were employed to immobilize AuNPs in spherical polymer brushes (SPBs), namely, the in situ preparation of AuNPs within the brush layer of SPBs and external addition of preprepared citrate-capped AuNPs. The distribution and stability of AuNPs in SPBs were studied by small-angle X-ray scattering (SAXS). SAXS results demonstrated that the in situ-prepared AuNPs were mainly located on the inner layer and their amount decreased from inside to outside. In the case of external addition of preprepared AuNPs, the cationic SPB showed obvious immobilization, while almost no AuNPs were immobilized in the anionic SPB. The stable immobilization of the AuNPs in SPBs was the result of multiple interactions including complexation and electrostatic interaction. SAXS was validated to be a distinctive and powerful characterization method to provide theoretical guidance for the stable immobilization of AuNPs.
Flash nanoprecipitation (FNP) is an efficient technique for encapsulating drugs in particulate carriers assembled by amphiphilic polymers. In this study, a novel nanoparticular system of a model drug curcumin (CUR) based on FNP technique was developed by using cheap and commercially available amphiphilic poly(vinyl pyrrolidone) (PVP) as stabilizer and natural polymer chitosan (CS) as trapping agent. Using this strategy, high encapsulation efficiency (EE > 95%) and drug loading capacity (DLC > 40%) of CUR were achieved. The resulting CUR-loaded nanoparticles (NPs) showed a long-term stability (at least 2 months) and pH-responsive release behavior. This work offers a new strategy to prepare cost-effective drug-loaded NPs with high drug loading capacity and opens a unique opportunity for industrial scale-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.