Silicosis is a devastating disease caused by inhalation of silica dust that leads to inflammatory cascade and then scarring of the lung tissue. Increasing evidences indicate that soluble receptor for advanced glycation end products (sRAGE) is involved in inflammatory diseases. However, no data on the possible relationship between sRAGE and inflammation of silicosis are available. In this study, serum from subjects with silicosis (n=59) or from healthy controls (HC, n=14) was analyzed for the secretion of sRAGE, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), transforming growth factor-β1 (TGF-β1), and oxidized low-density lipoprotein (ox-LDL). The associations between sRAGE and cytokines and ox-LDL and lung function were assessed by Pearson’s correlation analyses. Mean levels of serum sRAGE were lower in silicosis than those in controls (p<0.05). The subjects who had a longer term of occupational exposure had higher levels of sRAGE (p<0.05). The secretion of TNF-α, IL-1β, IL-6, TGF-β1, and ox-LDL was significantly higher in the silicosis group than that in the HC group (p<0.05). Furthermore, the levels of sRAGE were negatively correlated with TNF-α, IL-6, IL-1β, and ox-LDL. There is no correlation between sRAGE and TGF-β1 and lung function. The optimal point of sRAGE for differentiating silicosis from healthy controls was 14250.02 pg/ml by ROC curve analysis. A decrease in serum sRAGE and its association with inflammatory response might suggest a role for sRAGE in the pathogenesis of silicosis.
Background Silicosis is a chronic occupational pulmonary disease characterized by persistent inflammation and irreversible fibrosis. Considerable evidences now indicate that S100 calcium-binding protein A4 (S100A4) has been associated with fibrotic diseases. However, the role of S100A4 in silicosis is still unclear. Methods In this study, serum levels of S100A4, transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) in patients with silicosis (n = 42) and control group (CG, n = 12) were measured by ELISA. S100A4 expression in lung tissues and primary alveolar macrophages (AMs) of mice with and without silicosis was detected by immunohistochemistry (IHC)/real-time PCR. The correlations between S100A4 and cytokines or lung function were assessed by Spearman's rank correlation analyses. Results Compared with CG, the levels of S100A4 were significantly increased in silicosis patients (70.84 (46.22, 102.46) ng/ml vs (49.84 (42.86, 60.02) ng/ml). The secretions of TGF-β1, CTGF, IL-6 and TNF-α in silicosis group were significantly higher than that in control group (p < 0.05). Serum S100A4 levels were positively correlated with TGF-β1 and IL-6, while were negatively correlated with lung function parameters including percentage of predicted forced vital capacity (FVC%pre), maximum vital capacity (Vcmax), deep inspiratory capacity (IC) and peak expiratory flow at 75% of vital capacity (PEF75). In receiver operating characteristic (ROC) analyses, S100A4 > 61.7 ng/ml had 63.4% sensitivity and 83.3% specificity for silicosis, and the area under the curve (AUC) was 0.707. Furthermore, immunostaining of lung tissues showed the accumulation of S100A4-positive cells in the areas of nodules of silicotic mice. The mRNA expression of S100A4 in the lung tissues and AMs of silicotic mice were significantly higher than controls. Conclusion These data suggested that increased S100A4 might contribute to the pathogenesis of silicosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.