Feelings of hunger and satiety are the key determinants for maintaining the life of humans and animals. Disturbed appetite control may disrupt the metabolic health of the host and cause various metabolic disorders. A variety of factors have been implicated in appetite control, including gut microbiota, which develop the intricate interactions to manipulate the metabolic requirements and hedonic feelings. Gut microbial metabolites and components act as appetite-related signaling molecules to regulate appetite-related hormone secretion and the immune system, or act directly on hypothalamic neurons. Herein, we summarize the effects of gut microbiota on host appetite and consider the potential molecular mechanisms. Furthermore, we propose that the manipulation of gut microbiota represents a clinical therapeutic potential for lessening the development and consequence of appetite-related disorders.
Melatonin, a circadian hormone, has been reported to improve host lipid metabolism by reprogramming the gut microbiota, which also exhibits rhythmicity in a light/dark cycle. However, the effect of the administration of exogenous melatonin on the diurnal variation in the gut microbiota in mice fed a high-fat diet (HFD) is unclear. Here, we further confirmed the antiobesogenic effect of melatonin on mice fed an HFD for 2 weeks. Samples were collected every 4 h within a 24-h period, and diurnal rhythms of clock gene expression (Clock, Cry1, Cry2, Per1, and Per2) and serum lipid indexes varied with diurnal time. Notably, Clock and triglycerides (TG) showed a marked rhythm in the control in melatonin-treated mice but not in the HFD-fed mice. The rhythmicity of these parameters was similar between the control and melatonin-treated HFD-fed mice compared with that in the HFD group, indicating an improvement caused by melatonin in the diurnal clock of host metabolism in HFD-fed mice. Moreover, 16S rRNA gene sequencing showed that most microbes exhibited daily rhythmicity, and the trends were different for different groups and at different time points. We also identified several specific microbes that correlated with the circadian clock genes and serum lipid indexes, which might indicate the potential mechanism of action of melatonin in HFD-fed mice. In addition, effects of melatonin exposure during daytime or nighttime were compared, but a nonsignificant difference was noticed in response to HFD-induced lipid dysmetabolism. Interestingly, the responses of microbiota-transplanted mice to HFD feeding also varied at different transplantation times (8:00 and 16:00) and with different microbiota donors. In summary, the daily oscillations in the expression of circadian clock genes, serum lipid indexes, and the gut microbiota appeared to be driven by short-term feeding of an HFD, while administration of exogenous melatonin improved the composition and diurnal rhythmicity of some specific gut microbiota in HFD-fed mice. IMPORTANCE The gut microbiota is strongly shaped by a high-fat diet, and obese humans and animals are characterized by low gut microbial diversity and impaired gut microbiota compositions. Comprehensive data on mammalian gut metagenomes shows gut microbiota exhibit circadian rhythms, which is disturbed by a high-fat diet. On the other hand, melatonin is a natural and ubiquitous molecule showing multiple mechanisms of regulating the circadian clock and lipid metabolism, while the role of melatonin in the regulation of the diurnal patterns of gut microbial structure and function in obese animals is not yet known. This study delineates an intricate picture of melatonin-gut microbiota circadian rhythms and may provide insight for obesity intervention.
Diarrhea is a common problem to the whole world and the occurrence of diarrhea is highly associated with gut microbiota, such as bacteria, fungi, and viruses. Generally, diarrheal patients or animals are characterized by gut microbiota dysbiosis and pathogen infections may lead to diarrheal phenotypes. Of relevance, reprograming gut microbiota communities by dietary probiotics or fecal bacteria transplantation are widely introduced to treat or prevent diarrhea. In this review, we discussed the influence of the gut microbiota in the infection of diarrhea pathogens, and updated the research of reshaping the gut microbiota to prevent or treat diarrhea for the past few years. Together, gut microbiota manipulation is of great significance to the prevention and treatment of diarrhea, and further insight into the function of the gut microbiota will help to discover more anti-diarrhea probiotics.
Nä slund, E., M. Ehrströ m, J. Ma, P. M. Hellströ m, and A. L. Kirchgessner. Localization and effects of orexin on fasting motility in the rat duodenum. Am J Physiol Gastrointest Liver Physiol 282: G470-G479, 2002; 10.1152/ajpgi. 00219.2001 and orexin B (OXB)] are novel neuropeptides that increase food intake in rodents. The aim of this study was to determine the distribution of orexin and orexin receptors (OX1R and OX2R) in the rat duodenum and examine the effects of intravenous orexin on fasting gut motility. OXA-like immunoreactivity was found in varicose nerve fibers in myenteric and submucosal ganglia, the circular muscle, the mucosa, submucosal and myenteric neurons, and numerous endocrine cells of the mucosa. OXA neurons displayed choline acetyltransferase immunoreactivity, and a subset contained vasoactive intestinal peptide. OXA-containing endocrine cells were identified as enterochromaffin (EC) cells based on the presence of 5-hydroxytryptamine immunoreactivity. OX1R was expressed by neural elements of the gut, and EC cells expressed OX2R. OXA at 100 and 500 pmol ⅐ kg Ϫ1 ⅐ min Ϫ1 significantly increased the myoelectric motor complex (MMC) cycle length compared with saline. Similarly, OXB increased the MMC cycle length at 100 pmol ⅐ kg Ϫ1 ⅐ min Ϫ1 , but there was no further effect at 500 pmol ⅐ kg Ϫ1 ⅐ min Ϫ1 . We postulate that orexins may affect the MMC through actions on enteric neurotransmission after being released from EC cells and/or enteric neurons. migrating motor complex; orexin receptors; enteric ganglia; enterochromaffin cells OREXINS ARE NOVEL NEUROPEPTIDES that appear to play a role in the regulation of feeding, arousal, and energy homeostasis (for review, see Ref. 29). The orexins consist of orexin A (OXA) and orexin B (OXB) that are proteolytically derived from the same 130-amino acid residue preproorexin precursor protein. To date, two orexin receptors (OX1R and OX2R) have been described that belong to the G protein-coupled receptor superfamily, with a proposed seven-transmembrane topology (24). According to in vitro binding and functional assays, OX1R is selective for OXA, and OX2R is nonselective for both OXA and OXB peptides (24).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.