BackgroundMultidrug-resistant bacteria such as extended-spectrum beta-lactamase (ESBL), Enterobacteriaceae, and methicillin-resistant Staphylococcus aureus (MRSA) pose a challenge to the human health care system. MRSA is among the major causes of hospital-acquired and community infections.MethodsTherefore, in the present study, we evaluated the antibacterial activity of silver nanoparticles synthesized by Fusarium oxysporum (AgNPbio) in combination with simvastatin against reference and multidrug-resistant bacterial strains.ResultsSimvastatin showed a minimal inhibitory concentration (MIC) ranging from 0.062 to 0.25 mg mL−1 against MRSA. AgNPbio with a size of 77.68± 33.95 nm and zeta potential −34.6 ± 12.7 mV showed an MIC of 0.212 mg mL−1 against S. aureus including MRSA strains. The checkerboard assay and time-kill curves exhibited a synergistic effect of the simvastatin-AgNPbio combination on antibacterial activity against MRSA strains. The combination of simvastatin and AgNPbio demonstrated antibacterial activity against Escherichia coli producing ESBL. Scanning electron microscopy showed the formation of cell surface protrusions after treatment with AgNPbio and the formation of a large amorphous mass after treatment with simvastatin, both in MRSA.ConclusionOur results indicate that the combination of AgNPbio and simvastatin could be a great future alternative in the control of bacterial infections, where, when combined with simvastatin, smaller doses of AgNPbio are required, with the same antibacterial activity.
Different studies investigate the use of waste glass in Portland cement compounds, either as aggregates or as supplementary cementitious materials. Nevertheless, it seems that there is no consensus about the influence of particle color and size on the behavior of the compounds. This study addresses the influence of cement replacement by 10 and 20% of the colorless and amber soda-lime glass particles sized around 9.5 m on the performance of Portland cement mortars. Results revealed that the partial replacement of cement could contribute to the production of durable mortars in relation to the inhibition of the alkali-aggregate reaction. This effect was more marked with 20% replacement using amber glass. Samples containing glass microparticles were more resistant to corrosion, in particular those made of colorless glass. The use of colorless and amber glass microparticles promoted a reduction in wear resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.