Due to the current problems related to the generation of diverse wastes and the extraction of nonrenewable materials to be used in the construction sector, the alternative use of waste glass could be a sustainable option with environmental and economic benefits, in case of being feasible its use as a replacement of the usual aggregates to manufacture recycled mortars. In this research, one presents a study of the fresh-state properties of the mortars containing 15, 30, 60, and 100% recycled glass aggregates as a replacement for the usual aggregate, providing the experimental results of consistency, density, and air content. Using the experimental results, and by means of a numerical and statistical analysis of these, a diagram of triple interaction that allows us to unify the behavior of the studied properties is constituted; making feasible with this, the prediction of the behavior of these properties with respect to variables as their ratio water/cement, aggregate/cement, and different percentages of replacement of aggregates.