In this paper, we present the experimental analysis of samples of recycled concrete (RC) with replacement of natural aggregate (NA) by recycled aggregate originating from concrete (RCA). The results of the tests of mechanical properties of RC were used for comparison with tests of mercury intrusion porosimetry (MIP), in which the distribution of the theoretical pore radius, critical pore ratio, the surface area of the concrete, threshold ratio and average pore radius were studied at ages of 7, 28 and 90 days. The results showed some variation in the properties of the RC with respect to ordinary concrete. Porosity increases considerably when NA is replaced by RCA. Additionally, a reduction in the mechanical properties of the RC is seen compared with ordinary concrete when porosity increases.
The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.
This research focuses on a comparison of 20 external wall systems that are conventionally used in Spanish residential buildings, from a perspective based on the product and construction process stages of the life cycle assessment. The primary objective is to provide data that allow knowing the environmental behavior of walls built with materials and practices conventionally. This type of analysis will enable promoting the creation of regulations that encourage the use of combinations of materials that generate the most environmentally suitable result, and in turn, contribute to the strengthening of the embodied stages study of buildings and their elements. The results indicate that the greatest impact arises in the product stage (90.9%), followed by the transport stage (8.9%) and the construction process stage (<1%). Strategies (such as the use of large-format pieces and the controlled increase in thickness of the thermal insulation) can contribute to reducing the environmental impact; on the contrary, practices such as the use of small-format pieces and laminated plasterboard can increase the environmental burden. The prediction of the environmental behavior (simulation equation) allows these possible impacts to be studied in a fast and simplified way.
Currently, few studies have compared the variations in environmental impact throughout the different stages of the life cycle of urban construction elements; and of these, only a minority approach it from the perspective of favoring mobility on a human scale and reducing the space allocated to motorized traffic flow. This study, by means of quantitative data, shows the environmental implications associated with prioritizing the non-motorized mobility of a city's inhabitants during the design process of an urban construction element, the residential street (referring to the stages of the production and the construction process: the "cradle to handover" approach). An emerging methodology in urban themes was used in order to obtain the environmental analysis: Life Cycle Assessment (LCA). The results show that the increase in the human scale and the favoring of non-motorized mobility generate a lower environmental impact (considering the same uses of materials for the different zones of analysis). Additionally, it was possible to establish the influence that the specific use of materials employed in the construction of the streets may have, as well as the importance that an LCA acquires in the design of the urban environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.