Established nucleic acid detection assays require extraction and purification before sequence amplification and/or enzymatic reactions, hampering their widespread applications in point-of-care (POC) formats. Magnetic immunoassays based on magnetic particle spectroscopy and magnetic nanoparticles (MNPs) are isothermal, extraction- and purification-free, and can be quantitative and benchtop, making them suitable for POC settings. Here, we demonstrate a Magnetic signal Amplification Circuit (MAC) that combines specificity of toehold-mediated DNA strand displacement with magnetic response of MNPs to a clustering/declustering process. Our MAC assays require neither amplification nor extraction of target nucleic acids, and reveal four times better sensitivity than that of a magnetic circuit without signal amplification. Using MAC, we detect a highly specific 43 nucleotides sequence of SARS-CoV-2 virus. The MAC enables sensing both DNA and RNA targets with varying lengths and resolving single-base mismatches. Our MAC can be a powerful tool for translating research of nucleic acids detection to the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.