For the planning and sustainable management of forest resources, well-managed plantations are of great significance to mitigate the decrease of forested areas. Monitoring these planted forests is essential for forest resource inventories. In this study, two ALOS PALSAR-2 quad-polarimetric synthetic aperture radar (SAR) images and ground measurements were employed to estimate growing stem volume (GSV) of Chinese fir plantations located in a hilly area of southern China. To investigate the relationships between forest GSV and polarization characteristics, single and fused variables were derived by the Yamaguchi decomposition and the saturation value of GSV was estimated using a semi-exponential empirical model as a base model. Based on the estimated saturation values and relative root mean square error (RRMSE), the single and fused characteristics and corresponding models were selected and integrated, which led to a novel saturation-based multivariate method used to improve the GSV estimation and mapping of Chinese fir plantations. The new findings included: (1) All the original polarimetric characteristics, statistically, were not significantly correlated with the forest GSV, and their logarithm and ratio transformation fused variables greatly improved the correlations, thus the estimation accuracy of the forest GSV. (2) The logarithm transformation of surface scattering resulted in the greatest saturation, value but the logarithm transformation of double-bounce scattering resulted in the smallest RRMSE of the GSV estimates. (3) Compared with the single transformations, the fused variables led to more reasonable saturation values and obviously reduced the values of RRMSE. (4) The saturation-based multivariate method led to more accurate estimates of the forest GSV than the univariate method, with the smallest value (29.64%) of RRMSE achieved using the set of six variables. This implied that the novel saturation-based multivariate method provided greater potential to improve the estimation and mapping of the forest GSV.during the past four decades. However, it is often difficult to directly obtain forest above ground biomass (AGB) for large areas. Rather than what is done for natural forests, instead, the AGB of plantations is usually derived by first measuring tree heights and diameters at breast height and calculating tree growing stem volumes (GSV) using allometric equations and then multiplying GSV with biomass expansion factors; that is, gravity coefficients by tree species. Thus, GSV is a basic and key factor in the planning and sustainable management of planted forest resources at regional scales [1-3].However, GSV is often obtained by ground measurements by sampling, which is time-consuming, labor-intensive and costly [4,5]. The topographic complexity of mountainous regions makes the ground-based survey even more difficult and costly. Remote sensing images have been widely used to map GSV on regional scales by combining them with field measurements of GSV at plot level. Because of the impacts of clouds, fog...
Abstract:Combining sample plot and image data has been widely used to map forest carbon density at local, regional, national and global scales. When mapping is conducted using multiple spatial resolution images at different scales, field observations have to be collected at the corresponding resolutions to match image values in pixel sizes. Given a study area, however, to save time and cost, field observations are often collected from sample plots having a fixed size. This will lead to inconsistency of spatial resolutions between sample plots and image pixels and impede the mapping and product quality assessment. In this study, a methodological framework was proposed to conduct mapping and accuracy assessment of forest carbon density at four spatial resolutions by combining remotely sensed data and reference values of sample plots from a systematical, nested and clustering sampling design. This design led to one field observation dataset at a 30 m spatial resolution sample plot level and three other reference datasets by averaging the observations from three, five and seven sample plots within each of 250 m and 500 m sub-blocks and 1000 m blocks, respectively. The datasets matched the pixel values of a Landsat 8 image and three MODIS products. A sequential Gaussian co-simulation (SGCS) and a sequential Gaussian block co-simulation (SGBCS), an upscaling algorithm, were employed to map forest carbon density at the spatial resolutions. This methodology was tested for mapping forest carbon density in Huang-Feng-Qiao forest farm of You County in Eastern Hunan of China. The results showed that: First, all of the means of predicted forest carbon density values at four spatial resolutions fell in the confidence intervals of the reference data at a significance level of 0.05. Second, the systematical, nested and clustering sampling design provided the potential to obtain spatial information of forest carbon density at multiple spatial resolutions. Third, the relative root mean square error (RMSE) of predicted values at the plot level was much greater than those at the sub-block and block levels. Moreover, the accuracies of the up-scaled estimates were much higher than those from previous studies. In addition, at the same spatial resolution, SGCSWA (scaling up the SGCS and Landsat derived 30 m resolution map using a window average (WA)) resulted in smallest relative RMSEs of up-scaled predictions, followed by combinations of Landsat images and SGBCS. The accuracies from both methods were significantly greater than those from the combinations of MODIS images and SGCS. Overall, this study implied that the combinations of Landsat 8 images and SGCSWA or SGBCS with the systematical, nested and clustering sampling design provided the potential to formulate a methodological framework to map forest carbon density and conduct accuracy assessment at multiple spatial resolutions. However, this methodology needs to be further refined and examined in other forest landscapes.
Abstract:There is a large amount of remote sensing data available for land use and land cover (LULC) classification and thus optimizing selection of remote sensing variables is a great challenge. Although many methods such as Jeffreys-Matusita (JM) distance and random forests (RF) have been developed for this purpose, the existing methods ignore correlation and information duplication among remote sensing variables. In this study, a novel approach was proposed to improve the measures of potential class separability for the selection of remote sensing variables by taking into account correlations among the variables. The proposed method was examined with a total of thirteen spectral variables from a Gaofen-1 image, three class separability measures including JM distance, transformed divergence and B-distance and three classifiers including Bayesian discriminant (BD), Mahalanobis distance (MD) and RF for classification of six LULC types at the East Dongting Lake of Hunan, China. The results showed that (1) The proposed approach selected the first three spectral variables and resulted in statistically stable classification accuracies for three improved class separability measures. That is, the classification accuracies using three or more spectral variables statistically did not significantly differ from each other at a significant level of 0.05; (2) The statistically stable classification accuracies obtained by integrating MD and BD classifiers with the improved class separability measures were also statistically not significantly different from those by RF; (3) The numbers of the selected spectral variables using the improved class separability measures to create the statistically stable classification accuracies by MD and BD classifiers were much smaller than those from the original class separability measures and RF; and (4) Three original class separability measures and RF led to similar ranks of importance of the spectral variables, while the ranks achieved by the improved class separability measures were different due to the consideration of correlations among the variables. This indicated that the proposed method more effectively and quickly selected the spectral variables to produce the statistically stable classification accuracies compared with the original class separability measures and RF and thus improved the selection of the spectral variables for the classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.