The use of biometrics has been successfully applied to security applications for some time. However, the extension of other potential applications with the use of biometric information is a very recent development. This paper summarizes the field of biometrics and investigates the potential of utilizing biometrics beyond the presently limited field of security applications. There are some synergies that can be established within security-related applications. These can also be relevant in other fields such as health and ambient intelligence. This paper describes these synergies. Overall, this paper highlights some interesting and exciting research areas as well as possible synergies between different applications using biometric information
Recent advances in speech technologies have produced new tools that can be used to improve the performance and flexibility of speaker recognition While there are few degrees of freedom or alternative methods when using fingerprint or iris identification techniques, speech offers much more flexibility and different levels for performing recognition: the system can force the user to speak in a particular manner, different for each attempt to enter. Also with voice input the system has other degrees of freedom, such as the use of knowledge/codes that only the user knows, or dialectical/semantical traits that are difficult to forge. This paper offers and overview of the state of the art in speaker recognition, with special emphasis on the pros and contras, and the current research lines. The current research lines include improved classification systems, and the use of high level information by means of probabilistic grammars. In conclusion, speaker recognition is far away from being a technology where all the possibilities have already been explored.
In this paper, we propose a criterion for pairwise combination of information from different sensors in order to decide how a given pair of sensors is useful for different applications. This criterion is related to the principle of maximum information preservation. We present experimental results for the case of face images at different spectral bands, which allow for the in advance evaluation of the usefulness of different sensor combinations as well as the possibility for crossed-sensor recognition (matching of images acquired in different spectral bands). The criterion that we propose is a generalization of the Fisher score for the case of mutual information, which is measured as the ratio of the interclass information to the intraclass. The score we propose measures the behavior of a pair of sensors either when they are used in combination or when they are used to discriminate between classes. Based on Information Theory measurements, we conclude that the best spectral band combination always contains the thermal image, while the best combination for crossed-sensor recognition is VIS and NIR.
Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.