Let's take a look at a possible future Germany that has reached its net-zero CO 2 emissions goal by 2050. What are the measures that have contributed to reaching this net-zero system? And what kind of implementation efforts are associated with this portfolio of measures?In this perspective, we outline how a carbon-neutral system for Germany in 2050 could look like, following three strategies of avoiding, reducing, and removing CO 2 emissions. We envision a net-zero-2050 Germany by combining analysis from an energy system model with insights into approaches that allow for a higher carbon circularity in the German system, and first results from assessments of national carbon dioxide removal (CDR) potentials.
Methanol is an example of a valuable chemical that can be produced from water and carbon dioxide through a chemical process that is fully powered by concentrated solar thermal energy and involves three steps: direct air capture (DAC), thermochemical splitting and methanol synthesis. In the present work, we consider the whole value chain from the harvesting of raw materials to the final product. We also identify synergies between the aforementioned steps and collect them in five possible scenarios aimed to reduce the specific energy consumption. To assess the scenarios, we combined data from low and high temperature DAC with an Aspen Plus® model of a plant that includes water and carbon dioxide splitting units via thermochemical cycles (TCC), CO/CO2 separation, storage and methanol synthesis. We paid special attention to the energy required for the generation of low oxygen partial pressures in the reduction step of the TCC, as well as the overall water consumption. Results show that suggested synergies, in particular, co-generation, are effective and can lead to solar-to-fuel efficiencies up to 10.2% (compared to the 8.8% baseline). In addition, we appoint vacuum as the most adequate strategy for obtaining low oxygen partial pressures.
Non-abatable emissions are one of the decarbonization challenges that could be addressed with carbon-neutral fuels. One promising production pathway is the direct air capture (DAC) of carbon dioxide, followed by a solar thermochemical cycle and liquid fuel synthesis. In this study, we explore different combinations of these technologies to produce methanol from an economic perspective in order to determine the most efficient one. For this purpose, a model is built and simulated in Aspen Plus®, and a solar field is designed and sized with HFLCAL®. The inherent dynamics of solar irradiation were considered with the meteorological data from Meteonorm® at the chosen location (Riyadh, Saudi Arabia). Four different integration strategies are assessed by determining the minimum selling price of methanol for each technology combination. These values were compared against a baseline with no synergies between the DAC and the solar fuels production. The results show that the most economical methanol is produced with a central low-temperature DAC unit that consumes the low-quality waste heat of the downstream process. Additionally, it is determined with a sensitivity analysis that the optimal annual production of methanol is 11.8 kt/y for a solar field with a design thermal output of 280 MW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.