This study provides detailed mechanistic insights into light-driven hydrogen production using an abundant copper−iron system. It focuses on the role of the heteroleptic copper photosensitizer [Cu(P ∧ P)(N ∧ N)] + , which can be oxidized or reduced after photoexcitation. By means of IR, EPR, and UV/vis spectroscopy as well as computational studies and spectroelectrochemistry, the possibility of both mechanisms was confirmed. UV/ vis spectroscopy revealed the reorganization of the original heteroleptic photosensitizer during catalysis toward a homoleptic [Cu(N ∧ N) 2 ] + species. Operando FTIR spectroscopy showed the formation of a catalytic diiron intermediate, which resembles well-known hydrogenase active site models.
An extended study of a novel visible-light-driven water reduction system containing an iridium photosensitizer, an in situ iron(0) phosphine water reduction catalyst (WRC), and triethylamine as sacrificial reductant is described. The influences of solvent composition, ligand, ligand-to-metal ratio, and pH were studied. The use of monodentate phosphine ligands led to improved activity of the WRC. By applying a WRC generated in situ from Fe(3) (CO)(12) and tris[3,5-bis(trifluoromethyl)phenyl]phosphine (P[C(6)H(3)(CF(3))(2)](3), Fe(3)(CO)(12)/PR(3)=1:1.5), a catalyst turnover number of more than 1500 was obtained, which constitutes the highest activity reported for any Fe WRC. The maximum incident photon to hydrogen efficiency obtained was 13.4% (440 nm). It is demonstrated that the evolved H(2) flow (0.23 mmol H(2) h(-1) mg(-1) Fe(3)(CO)(12)) is sufficient to be used in polymer electrolyte membrane fuel cells, which generate electricity directly from water with visible light. Mechanistic studies by NMR spectroscopy, in situ IR spectroscopy, and DFT calculations allow for an improved understanding of the mechanism. With respect to the Fe WRC, the complex [HNEt(3)](+)[HFe(3)(CO)(11)](-) was identified as the key intermediate during the catalytic cycle, which led to light-driven hydrogen generation from water.
A bi-catalytic system, in which Ru-MACHO-BH and Ru(H)2(dppe)2 interact in a synergistic manner, was developed for the base-free dehydrogenation of methanol. A total TON > 4200 was obtained with only trace amounts of CO contamination (<8 ppm) in the produced gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.