Metal oxide nanoparticles have emerged as exceptionally potent biomedical sensors and actuators due to their unique physicochemical features. Despite fascinating achievements, the current limited understanding of the molecular interplay between nanoparticles and the surrounding tissue remains a major obstacle in the rationalized development of nanomedicines, which is reflected in their poor clinical approval rate. This work reports on the nanoscopic characterization of inorganic nanoparticles in tissue by the example of complex metal oxide nanoparticle hybrids consisting of crystalline cerium oxide and the biodegradable ceramic bioglass. A validated analytical method based on semiquantitative X‐ray fluorescence and inductively coupled plasma spectrometry is used to assess nanoparticle biodistribution following intravenous and topical application. Then, a correlative multiscale analytical cascade based on a combination of microscopy and spectroscopy techniques shows that the topically applied hybrid nanoparticles remain at the initial site and are preferentially taken up into macrophages, form apatite on their surface, and lead to increased accumulation of lipids in their surroundings. Taken together, this work displays how modern analytical techniques can be harnessed to gain unprecedented insights into the biodistribution and biotransformation of complex inorganic nanoparticles. Such nanoscopic characterization is imperative for the rationalized engineering of safe and efficacious nanoparticle‐based systems.
Electrodeposition of Fe-Cr-Ni alloy thin films with high corrosion resistance, low cytotoxicity and soft-magnetic properties is reported. Fe-Cr-Ni films with Cr contents from 5 wt% to 40 wt% were prepared by adjusting the current density during electrodeposition and the film properties were investigated. An excellent corrosion resistance was found in films with high Cr contents (≥30 wt%), where anodic polarization performance similar to those of AISI 304 and 316L stainless steels was observed in both acidic and biological media. Cell compatibility, measured by lactate dehydrogenase assay, demonstrated that electrodeposited Fe-Cr-Ni films exhibit low cytotoxicity, comparable to AISI 304 and 316L stainless steels. Unlike AISI 304 and AISI 316L, which are conventional austenite stainless steels, the electrodeposited Fe-Cr-Ni films were found to be amorphous. This leads to soft ferromagnetic characteristics, which are dependent on the alloy composition. The unique combination of excellent corrosion resistance, low cytotoxicity and tunable magnetic properties makes this material interesting for functional coatings and components in advanced biological and medical microsystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.