BackgroundAsymptomatic left ventricular (LV) dysfunction is highly prevalent in type 2 diabetes patients. Unlike the other hypoglycemic drugs, SGLT2 inhibitors have shown potential benefits for reducing cardiovascular death and risk factors, aside from lowering plasma glucose levels. With this study we aim at determining whether the treatment with empagliflozin is associated with an improvement in LV functions in diabetic patients with asymptomatic LV dysfunction against Sitagliptin, which is presumably neutral on myocardial function. To determine changes in LV systolic and diastolic functions we will use speckle-tracking echocardiography, a novel sensitive, non-invasive, bedside method allowing the calculation of LV global longitudinal strain (GLS), an index of myocardial deformability, as well as 3D echocardiography, which allows a better evaluation of LV volumes and mass.MethodsThe EMPA-HEART trial will be a phase III, open label, active-controlled, parallel groups, single centre, exploratory study conducted in Pisa, Italy. A cohort of 75 diabetic patients with normal LV systolic (2D-Echo EF > 50%) and renal (eGFR sec MDRD > 60 ml/min/1.73 mq) functions and no evidence of valvular and/or ischemic heart disease will be randomized to either Empagliflozin 10 mg/die or Sitagliptin 100 mg/die. The primary outcome is to detect a change in GLS from baseline to 1 and 6 months after treatment initiation. The secondary outcomes include changes from baseline to 6 months in 3-D Echocardiography EF, left atrial volume and E/E′, VO2max as measured at cardiopulmonary test, cardiac autonomic function tests (R–R interval during Valsalva manoeuvre, deep-breathing, lying-to-standing), and the determination of a set of plasma biomarkers aimed at studying volume, inflammation, oxidative stress, matrix remodelling, myocyte strain and injury.DiscussionSGLT2 inhibitors might affect myocardial functions through mechanisms acting both directly and indirectly on the myocardium. The set of instrumental and biohumoral tests of our study might actually detect the presence and entity of empagliflozin beneficial effects on the myocardium and shed light on the mechanisms involved. Further, this study might eventually provide information to design a clinical strategy, based on echocardiography and/or biomarkers, to select the patients who might benefit more from this intervention. Trial registration EUDRACT Code 2016-0022250-10
Critical limb ischemia (CLI) is the most advanced form of peripheral artery disease. It is associated with significant morbidity and mortality and high management costs. It carries a high risk of amputation and local infection. Moreover, cardiovascular complications remain a major concern. Although it is a well-known entity and new technological and therapeutic advances have been made, this condition remains poorly addressed, with significantly heterogeneous management, especially in nonexperienced centers. This review, from a third-level dedicated inpatient and outpatient cardioangiology structure, aims to provide an updated summary on the topic of CLI of its complexity, encompassing epidemiological, social, economical and, in particular, diagnostic/imaging issues, together with potential therapeutic strategies (medical, endovascular, and surgical), including the evaluation of cardiovascular risk factors, the diagnosis, and treatment together with prognostic stratification.
Aortic valve stenosis (AVS) is associated with significant myocardial fibrosis (MF). Global longitudinal strain (GLS) is a sensible indicator of systolic dysfunction. ST2 is a member of the interleukin (IL)-1 receptor family and a modulator of hypertrophic and fibrotic responses. We aimed at assessing: (a) the association between adverse LV remodeling, LV functional parameters (including GLS) and sST2 level. (b) The association between MF (detected by endo-myocardial biopsy) and sST2 in patients with AVS undergoing surgical valve replacement. Twenty-two patients with severe AVS and preserved EF underwent aortic valve replacement. They performed laboratory analysis, including serum ST2 (sST2), echocardiography and inter-ventricular septum biopsy to assess MF (%). We included ten controls for comparison. Compared to controls, patients showed higher sST2 levels (p < 0.0001). sST2 showed correlation with Age (r = 0.58; p = 0.0004), E/e' average (r = 0.58; p = 0.0007), GLS (r = 0.61; p = 0.0002), LAVi (r = 0.51; p = 0.003), LVMi (r = 0.43; p = 0.01), sPAP (r = 0.36; p = 0.04) and SVi (r = -0.47; p < 0.005). No correlation was found between MF and sST2. At ROC analysis, a sST2 ≥ 284 ng/mL had the best accuracy to discriminate controls from patients with impaired GLS, i.e. GLS ≤ 17% (AUC 0.80; p = 0.003; sensitivity 95%; specificity 83%) and increased E/e' average (AUC 0.87; p = 0.0001; sensitivity 96%; specificity 74%). At multivariate regression analysis GLS resulted the only independent predictor of sST2 levels (R = 0.35; p = 0.0004). Patients with severe AVS present elevated sST2 levels. LV GLS resulted the only independent predictor of sST2 levels.
Aortic valve stenosis (AVS) represents a cluster of different phenotypes, considering gradient and flow pattern. Circulating micro RNAs may reflect specific pathophysiological processes and could be useful biomarkers to identify disease. We assessed 80 patients (81, 76.7–84 years; 46, 57.5%females) with severe AVS. We performed bio-humoral evaluation (including circulating miRNA-1, 21, 29, 133) and 2D-echocardiography. Patients were classified according to ACC/AHA groups (D1-D3) and flow-gradient classification, considering normal/low flow, (NF/LF) and normal/high gradient, (NG/HG). Patients with reduced ejection fractionwere characterized by higher levels of miRNA1 (p = 0.003) and miRNA 133 (p = 0.03). LF condition was associated with higher levels of miRNA1 (p = 0.02) and miRNA21 (p = 0.02). Levels of miRNA21 were increased in patients with reduced Global longitudinal strain (p = 0.03). LF-HG and LF-LG showed higher levels of miRNA1 expression (p = 0.005). At one-year follow-up miRNA21 and miRNA29 levels resulted significant independent predictors of reverse remodeling and systolic function increase, respectively. Different phenotypes of AVS may express differential levels and types of miRNAs, which may retain a pathophysiological role in pro-hypertrophic and pro-fibrotic processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.