The mechanochemical syntheses of allyl and indenyl palladate complexes are reported. All compounds were obtained in quantitative yields and microanalytically pure without the need of any workup. These complexes are stable in chlorinated and polar (DMSO or DMSO/H 2 O solutions) solvents. In chlorinated solvents, they appear as ionic pairs of which crystals suitable for single X-ray diffraction studies have been obtained. Bonding and solvation properties are rationalized through scalar relativistic DFT calculations. Moreover, most complexes showed excellent cytotoxicity towards ovarian cancer cell lines, with IC 50 values comparable or lower than cisplatin. The potent anticancer activity of two IPr Cl and IPr*-based palladate complexes was examined in a high-grade serous ovarian cancer (HGSOC) patient-derived tumoroid. Moreover, the inhibition of the antioxidant enzyme thioredoxin reductase (TrxR) was noticed, and structure-activity relationships could be derived, suggesting the ROS detoxifying system is involved in the mode of action.
The modularity and ease of synthesis of carbene-metal-amide (CMA) complexes based on the coinage metals (Au, Ag, Cu) and N-heterocyclic carbenes (NHCs) as ancillary ligands pave the way for the expansion of their applications beyond photochemistry and catalysis. Herein, we further improve the synthesis of such compounds by circumventing the use of toxic organic solvents which were previously required for their purification, and we expand their scope to include complexes incorporating carbolines as the amido fragments. The novel complexes are screened both in vitro and ex vivo, against several cancer cell lines and high-grade serous ovarian cancer (HGSOC) tumoroids, respectively. Excellent cytotoxicity values are obtained for most complexes, while the structural variety of the CMA library screened thus far, provides promising leads for future developments. Variations of all three components (NHC, metal, amido ligand), enable the establishment of trends regarding cytotoxicity and selectivity towards cancerous over normal cells.
A simple synthetic pathway to Au-NHC amido complexes is reported. Syntheses and isolation of [Au(NHC)(NR1R2)] complexes, bearing various NHC ligands and NH-containing heterocycles under mild conditions are described. The in...
High-grade serous ovarian cancer (HGSOC) needs new technologies for improving cancer diagnosis and therapy. It is a fatal disease with few options for the patients. In this context, dynamic culture systems coupling with patient-derived cancer 3D microstructures could offer a new opportunity for exploring novel therapeutic approaches. In this study, we optimized a passive microfluidic platform with 3D cancer organoids, which allows a standardized approach among different patients, a minimum requirement of samples, multiple interrogations of biological events, and a rapid response. The passive flow was optimized to improve the growth of cancer organoids, avoiding the disruption of the extracellular matrix (ECM). Under optimized conditions of the OrganoFlow (tilting angle of 15° and an interval of rocking every 8 min), the cancer organoids grow faster than when they are in static conditions and the number of dead cells is reduced over time. To calculate the IC50 values of standard chemotherapeutic drugs (carboplatin, paclitaxel, and doxorubicin) and targeted drugs (ATRA), different approaches were utilized. Resazurin staining, ATP-based assay, and DAPI/PI colocalization assays were compared, and the IC50 values were calculated. The results showed that in the passive flow, the IC50 values are lower than in static conditions. FITC-labeled paclitaxel shows a better penetration of ECM under passive flow than in static conditions, and cancer organoids start to die after 48 h instead of 96 h, respectively. Cancer organoids are the last frontiers for ex vivo testing of drugs that replicate the response of patients in the clinic. For this study, organoids derived from ascites or tissues of patients with Ovarian Cancer have been used. In conclusion, it was possible to develop a protocol for organoid cultures in a passive microfluidic platform with a higher growth rate, faster drug response, and better penetration of drugs into ECM, maintaining the samples’ vitals and collecting the data on the same plate for up to 16 drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.