This work deals with various investigations into the accuracy of a newly developed planar nanopositioning machine. This machine, called Nanofabrication Machine 100 (NFM-100), has a positioning range of 100 mm in diameter. To determine the precision, various movement scenarios are performed with the machine table, and the trajectory deviation from the set trajectory is determined. In particular, the focus is on high velocities of up to 20 mm/s. Even at high speeds in the range of several millimetres per second, this machine can impress with its performance and only has a deviation in the nanometre range.
A novel device is presented which is designed for in-process measurements of the variation of the diameter of highly reflective spheres. Silicon spheres have been used for the new definition of the International System of Units (SI). Many spheres have to be processed, and the form of these objects, and thus the manufacturing process’s stability, needs to be controlled every day. Commercially available measurement equipment and even state-of-the-art spherical interferometers have reached their limits in terms of resolution, uncertainty, the complexity of their handling routines, measurement time and even financial investment. A novel setup has thus been designed after considering and selecting a special mechanical setup with a minimal measurement loop, stable optical sensors and a handling strategy which avoids collision and contact with the very valuable, superpolished spherical objects. Thus, the design minimizes the influence of the environment and reduces the measurement time at an equator with sub-nanometre resolution to 3 min. In addition, the analysis time is reduced to less than a minute.
We present a simple and precise method to minimize aberrations of mirror-based, wavelength-dispersive spectrometers for the extreme ultraviolet (XUV) and soft x-ray domain. The concept enables an enhanced resolving power
E
/
Δ
E
, in particular, close to the diffraction limit over a spectral band of a few percent around the design energy of the instrument. Our optical element, the “diffractive wavefront corrector” (DWC), is individually shaped to the form and figure error of the mirror profile and might be written directly with a laser on a plane and even strongly curved substrates. Theory and simulations of various configurations, like Hettrick–Underwood or compact, highly efficient all-in-one setups for
T
i
O
2
spectroscopy with
E
/
Δ
E
∼
x
<2016
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.