This paper surveys the most important algorithmic and computational results on the Vertex Coloring Problem (VCP) and its generalizations. The first part of the paper introduces the classical models for the VCP, and discusses how these models can be used and possibly strengthened to derive exact and heuristic algorithms for the problem. Computational results on the best performing algorithms proposed in the literature are reported. The second part of the paper is devoted to some generalizations of the problem, which are obtained by considering additional constraints [Bandwidth (Multi) Coloring Problem, Bounded Vertex Coloring Problem] or an objective function with a special structure (Weighted Vertex Coloring Problem). The extension of the models for the classical VCP to the considered problems and the best performing algorithms from the literature, as well as the corresponding computational results, are reported.
a b s t r a c tGiven an undirected graph G = (V , E), the Vertex Coloring Problem (VCP) requires to assign a color to each vertex in such a way that colors on adjacent vertices are different and the number of colors used is minimized. In this paper, we present an exact algorithm for the solution of VCP based on the well-known Set Covering formulation of the problem. We propose a Branch-and-Price algorithm embedding an effective heuristic from the literature and some methods for the solution of the slave problem, as well as two alternative branching schemes. Computational experiments on instances from the literature show the effectiveness of the algorithm, which is able to solve, for the first time to proven optimality, five of the benchmark instances in the literature, and reduce the optimality gap of many others.
Given an undirected graph G = V E, the vertex coloring problem (VCP) requires to assign a color to each vertex in such a way that colors on adjacent vertices are different and the number of colors used is mini- mized. In this paper, we propose a metaheuristic approach for VCP that performs two phases: the first phase is based on an evolutionary algorithm, whereas the second one is a postoptimization phase based on the set covering formulation of the problem. Computational results on a set of DIMACS instances show that the over- all algorithm is able to produce high-quality solutions in a reasonable amount of time. For four instances, the proposed algorithm is able to improve the best-known solution while for almost all the remaining instances, it finds the best-known solution in the literature
We propose a framework to model general guillotine restrictions in two-dimensional cutting problems formulated as Mixed Integer Linear Programs (MIP). The modeling framework requires a pseudo-polynomial number of variables and constraints, which can be effectively enumerated for medium-size instances. Our modeling of general guillotine cuts is the first one that, once it is implemented within a state-of-the-art MIP solver, can tackle instances of challenging size. We mainly concentrate our analysis on the Guillotine Two Dimensional Knapsack Problem (G2KP), for which a model, and an exact procedure able to significantly improve the computational performance, are given. We also show how the modeling of general guillotine cuts can be extended to other relevant problems such as the Guillotine Two Dimensional Cutting Stock Problem (G2CSP) and the Guillotine Strip Packing Problem (GSPP). Finally, we conclude the paper discussing an extensive set of computational experiments on G2KP and GSPP benchmark instances from the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.