In this paper, we propose a novel, computational efficient, dynamic ridesharing algorithm. The beneficial computational properties of the algorithm arise from casting the ridesharing problem as a linear assignment problem between fleet vehicles and customer trip requests within a federated optimization architecture. The resulting algorithm is up to four times faster than the state-of-the-art, even if it is implemented on a less dedicated hardware, and achieves similar service quality. Current literature showcases the ability of state-ofthe-art ridesharing algorithms to tackle very large fleets and customer requests in almost near real-time, but the benefits of ridesharing seem limited to centralized systems. Our algorithm suggests that this does not need to be the case. The algorithm that we propose is fully distributable among multiple ridesharing companies. By leveraging two datasets, the New York city taxi dataset and the Melbourne Metropolitan Area dataset, we show that with our algorithm, real-time ridesharing offers clear benefits with respect to more traditional taxi fleets in terms of level of service, even if one considers partial adoption of the system. In fact, e.g., the quality of the solutions obtained in the state-of-the-art works that tackle the whole customer set of the New York city taxi dataset is achieved, even if one considers only a proportion of the fleet size and customer requests. This could make real-time urban-scale ridesharing very attractive to small enterprises and city authorities alike. However, in some cases, e.g., in multi-company scenarios where companies have predefined market shares, we show that the number of vehicles needed to achieve a comparable performance to the monopolistic setting increases, and this raises concerns on the possible negative effects of multi-company ridesharing.
This article outlines our point of view regarding the applicability, state-of-the-art, and potential of quantum computing for problems in finance. We provide an introduction to quantum computing as well as a survey on problem classes in finance that are computationally challenging classically and for which quantum computing algorithms are promising. In the main part, we describe in detail quantum algorithms for specific applications arising in financial services, such as those involving simulation, optimization, and machine learning problems. In addition, we include demonstrations of quantum algorithms on IBM Quantum back-ends and discuss the potential benefits of quantum algorithms for problems in financial services. We conclude with a summary of technical challenges and future prospects.
The determination of vehicle routes fulfilling connectivity, time, and operational constraints is a well-studied combinatorial optimization problem. The NP-hard complexity of vehicle routing problems has fostered the adoption of tailored exact approaches, matheuristics, and metaheuristics on classical computing devices. The ongoing evolution of quantum computing hardware and the recent advances of quantum algorithms (i.e., VQE, QAOA, ADMM) for mathematical programming make decision-making for routing problems an avenue of research worthwhile to be explored on quantum devices. In this paper, we propose several mathematical formulations for inventory routing cast as vehicle routing with time windows, and comment on their strengths and weaknesses. The optimization models are compared from a quantum computing perspective, specifically with metrics to evaluate the difficulty in solving the underlying quadratic unconstrained binary optimization problems. Finally, the solutions obtained on simulated quantum devices demonstrate the relative benefits of different algorithms, and their robustness when put into practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.