One description provides only probabilities for obtaining various eigenvalues of a quantum variable. The eigenvalues and the corresponding probabilities specify the expectation value of a physical observable, which is known to be a statistical property of an ensemble of quantum systems. In contrast to this paradigm, here we demonstrate a method for measuring the expectation value of a physical variable on a single particle, namely, the polarization of a single protected photon. This realization of quantum protective measurements could find applications in the foundations of quantum mechanics and quantum-enhanced measurements
Pseudo-density matrices are a generalisation of quantum states and do not obey monogamy of quantum correlations. Could this be the solution to the paradox of information loss during the evaporation of a black hole? In this paper we discuss this possibility, providing a theoretical proposal to extend quantum theory with these pseudo-states to describe the statistics arising in black-hole evaporation. We also provide an experimental demonstration of this theoretical proposal, using a simulation in optical regime, that tomographically reproduces the correlations of the pseudo-density matrix describing this physical phenomenon.
How irreversibility arises in a universe with time-reversal symmetric laws is a central problem in physics. In this Letter, we discuss a radically different take on the emergence of irreversibility, adopting the recently proposed constructor theory framework. Irreversibility is expressed as the requirement that a task is possible, while its inverse is not. We prove the compatibility of such irreversibility with quantum theory's time-reversal symmetric laws, using a dynamical model based on the universal quantum homogenizer. We also test the physical realizability of this model by means of an experimental demonstration with highquality single-photon qubits.
Closed timelike curves are striking predictions of general relativity allowing for time-travel. They are afflicted by notorious causality issues (e.g. grandfather’s paradox). Quantum models where a qubit travels back in time solve these problems, at the cost of violating quantum theory’s linearity—leading e.g. to universal quantum cloning. Interestingly, linearity is violated even by open timelike curves (OTCs), where the qubit does not interact with its past copy, but is initially entangled with another qubit. Non-linear dynamics is needed to avoid violating entanglement monogamy. Here we propose an alternative approach to OTCs, allowing for monogamy violations. Specifically, we describe the qubit in the OTC via a pseudo-density operator—a unified descriptor of both temporal and spatial correlations. We also simulate the monogamy violation with polarization-entangled photons, providing a pseudo-density operator quantum tomography. Remarkably, our proposal applies to any space-time correlations violating entanglement monogamy, such as those arising in black holes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.