Ion channels are extraordinarily efficient machines that move ions in diversely controlled manners, allowing cells to rapidly exchange information with the outside world and with other cells. Communication is the currency of fertilization, as it is of most fundamental cell signaling events. Ion channels are deeply involved in the dialogue between sperm, its surroundings, and the egg. How sperm swim, find the egg and fertilize it depend on ion permeability changes modulated by environmental cues and components of the egg outer layer. Different ion channels distinctly localized in these tiny, amazing cells perform specific decoding functions that shape the sophisticated behavior of sperm. It is not surprising that certain sperm ion channels are turning out to be unique. New strategies to characterize sperm ion transport have opened exciting possibilities to dissect sperm-egg signaling and unveil novel contraception targets.
In a process called capacitation, mammalian sperm gain the ability to fertilize after residing in the female tract. During capacitation the mouse sperm plasma membrane potential (E m ) hyperpolarizes. However, the mechanisms that regulate sperm E m are not well understood. Here we show that sperm hyperpolarize when external Mammalian sperm are not able to fertilize after ejaculation. They acquire this ability only after residing in the female uterine tract for a finite period of time that varies depending on the species. The molecular, biochemical, and physiological changes that occur in sperm while in the female tract are collectively referred to as capacitation (1). Capacitation is associated with changes in membrane properties, enzyme activities, and motility that prepare the sperm for the acrosome reaction and for penetration of the egg vestments prior to fertilization. The molecular basis of capacitation has been partially defined and includes: the removal of cholesterol from the sperm plasma membrane by cholesterol acceptors such as bovine serum albumin (2, 3), modifications in plasma membrane phospholipids, fluxes of HCO 3 Ϫ (4) and other intracellular ions, and increased tyrosine phosphorylation of proteins (5-7). These events are likely to play a role in the induction of hyperactivated motility and the ability of the sperm to undergo a regulated acrosome reaction (for review see Ref. 8).Bovine and mouse sperm capacitation is also accompanied by a plasma membrane hyperpolarization. E m decreases in mouse sperm from Ϫ38 to Ϫ55 mV (4, 9, 10) and in bovine sperm from Ϫ33 to Ϫ66 mV (9). Because capacitation prepares sperm for the acrosome reaction, the capacitation-associated hyperpolarization may regulate the ability of sperm to generate transient Ca 2ϩ elevations during the acrosome reaction induced by physiological agonists (e.g. zona pellucida) (11). In this respect, low voltage-activated T-type Ca 2ϩ channels have been detected in mouse spermatogenic cells (12, 13), and these channels are also present in mature mouse sperm (14, 15). One unique property of low voltage-activated Ca 2ϩ channels is that they inactivate at the resting E m of sperm prior to capacitation (around Ϫ35 mV) (12,14). Thus, if low voltage-activated Ca 2ϩ channels are involved in the regulation of the acrosome reaction, the capacitation-associated sperm hyperpolarization may be required to remove this inactivation (11,16,17).Although the molecular mechanisms by which the sperm E m hyperpolarizes during capacitation are not clear, there exist several potential candidates. demonstrated with patch clamp techniques that inward rectifying K ϩ channels are expressed in mouse spermatogenic cells and proposed that these channels may contribute to the capacitation-associated sperm membrane hyperpolarization. An increase in sperm K ϩ permeability should lead to an E m hyperpolarization, according to the K ϩ equilibrium potential (18). Alternatively, the sperm plasma membrane may become less permeable to Na ϩ . The relatively depolarized mamma...
Mammalian sperm acquire fertilizing ability in the female tract during a process known as capacitation. In mouse sperm, this process is associated with increases in protein tyrosine phosphorylation, membrane potential hyperpolarization, increase in intracellular pH and Ca 2؉, and hyperactivated motility. The molecular mechanisms involved in these changes are not fully known. Present evidence suggests that in mouse sperm the capacitation-associated membrane hyperpolarization is regulated by a cAMP/protein kinase A-dependent pathway involving activation of inwardly rectifying K ؉ channels and inhibition of epithelial sodium channels (ENaCs). The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl ؊ channel that controls the activity of several transport proteins, including ENaCs. Here we explored whether CFTR is involved in the regulation of ENaC inhibition in sperm and therefore is essential for the capacitation-associated hyperpolarization. Using reverse transcription-PCR, Western blot, and immunocytochemistry, we document the presence of CFTR in mouse and human sperm. Interestingly, the addition of a CFTR inhibitor (diphenylamine-2-carboxylic acid; 250 M) inhibited the capacitation-associated hyperpolarization, prevented ENaC closure, and decreased the zona pellucida-induced acrosome reaction without affecting the increase in tyrosine phosphorylation. Incubation of sperm in Cl ؊ -free medium also eliminated the capacitationassociated hyperpolarization. On the other hand, a CFTR activator (genistein; 5-10 M) promoted hyperpolarization in mouse sperm incubated under conditions that do not support capacitation. The addition of dibutyryl cyclic AMP to noncapacitated mouse sperm elevated intracellular Cl ؊ . These results suggest that cAMPdependent Cl ؊ fluxes through CFTR are involved in the regulation of ENaC during capacitation and thus contribute to the observed hyperpolarization associated with this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.