Molecular dynamics simulations of fluids of molecules with extended dipoles were performed, with increasing distance between point charges but with a constant dipole moment, to obtain thermodynamic properties. It was found that the effect of varying the dipole length on the dielectric constant in the liquid phase, the vapor-liquid equilibria, and the surface tension was negligible for dipolar lengths up to half the particle diameter. By comparing thermodynamic properties of the predictions of the extended dipole model with those for the Stockmayer fluid of point dipoles, it was found that extended dipoles are equivalent to point dipoles over a wide range of dipole lengths, and not only near the point dipole limit, when the separation length is very small compared with the mean distance between particles. Finally, phase equilibrium results of extended dipoles were compared to those obtained from the discrete perturbation theory for a Stockmayer potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.