Climate projections provided by EURO-CORDEX predict changes in annual maximum series of daily rainfall in the future in some areas of Spain because of climate change. Precipitation and temperature projections supplied by climate models do not usually fit exactly the statistical properties of the observed time series in the control period. Bias correction methods are used to reduce such errors. This paper seeks to find the most adequate bias correction techniques for temperature and precipitation projections that minimizes the errors between observations and climate model simulations in the control period. Errors in flood quantiles are considered to identify the best bias correction techniques, as flood quantiles are used for hydraulic infrastructure design and safety assessment. In addition, this study aims to understand how the expected changes in precipitation extremes and temperature will affect the catchment response in flood events in the future. Hydrological modelling is required to characterize rainfall-runoff processes adequately in a changing climate, in order to estimate flood changes expected in the future. Four catchments located in the central-western part of Spain have been selected as case studies. The HBV hydrological model has been calibrated in the four catchments by using the observed precipitation, temperature and streamflow data available on a daily scale. Rainfall has been identified as the most significant input to the model, in terms of its influence on flood response. The quantile mapping polynomial correction has been found to be the best bias correction method for precipitation. A general reduction in flood quantiles is expected in the future, smoothing the increases identified in precipitation quantiles by the reduction of soil moisture content in catchments, due to the expected increase in temperature and decrease in mean annual precipitations.
Annual maximum daily rainfalls will change in the future because of climate change, according to climate projections provided by EURO-CORDEX. This study aims at understanding how the expected changes in precipitation extremes will affect the flood behavior in the future. Hydrological modeling is required to characterize the rainfall-runoff process adequately in a changing climate to estimate flood changes. Precipitation and temperature projections given by climate models in the control period usually do not fit the observations in the same period exactly from a statistical point of view. To correct such errors, bias correction methods are used. This paper aims at finding the most adequate bias correction method for both temperature and precipitation projections, minimizing the errors between observed and simulated precipitation and flood frequency curves. Four catchments located in central western Spain have been selected as case studies. The HBV hydrological model has been calibrated, using the observed precipitation, temperature, and streamflow data available at a daily scale. Expected changes in precipitation extremes are usually smoothed by the reduction of soil moisture content due to expected increases in temperatures and decreases in mean annual precipitation. Consequently, rainfall is the most significant input to the model and polynomial quantile mapping is the best bias correction method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.