Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer–Emmett–Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro‐ and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already‐measured raw adsorption isotherms were provided to sixty‐one labs, who were asked to calculate the corresponding BET areas. This round‐robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called “BET surface identification” (BETSI), expands on the well‐known Rouquerol criteria and makes an unambiguous BET area assignment possible.
The aim of this work is to make a brief review of the adsorption of CO2 on modified clay minerals. Previous researchers have used different clay modifications, either by making changes in the structure by a reaction with another product or by the addition of a catalyst to improve their CO2 adsorption capacity. In order to obtain high values of CO2 uptake, some researchers have been incorporated amines-speices such as (3-aminopropyl)triethoxysilane (APTES), tetraethylenepentamine (TEPA) and a branched polyethylenimine (PEI) by grafting or impregnation. The synthesis of an adsorbent from mineral clays can generate an increase in its porosity and in its textural properties. These investigations differ in a number of factors such as the kind of clay, the operating conditions, y and the nature of the impregnated compound. The role of these factors in the CO2 adsorption capacity will be considered in detail in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.