Nanoparticle encapsulation inside zirconium-based metal-organic frameworks (NP@MOF) is hard to control and the resulting materials often have non-uniform morphologies with NPs on the external surface of MOFs and NP aggregates inside the MOFs. In this work, we report the controlled encapsulation of gold nanorods (AuNRs) by a scu-topology Zr-MOF, via a room-temperature MOF assembly. This is achieved by functionalizing the AuNRs with polyethylene glycol (PEG) surface ligands, allowing them to retain colloidal stability in the precursor solution and to seed the MOF growth. Using this approach, we achieve core-shell yields exceeding 99%, tuning the MOF particle size via the solution concentration of AuNRs. The functionality of AuNR@MOFs is demonstrated by using the AuNRs as embedded probes for selective surface-enhanced Raman spectroscopy (SERS). The AuNR@MOFs are able to both take-up or block molecules from the pores, thereby facilitating highly-selective sensing at the AuNR ends. This proofof-principle study serves both to present the outstanding level of control in the synthesis as well as the high potential for AuNR@Zr-MOF composites for SERS.
Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer–Emmett–Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro‐ and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already‐measured raw adsorption isotherms were provided to sixty‐one labs, who were asked to calculate the corresponding BET areas. This round‐robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called “BET surface identification” (BETSI), expands on the well‐known Rouquerol criteria and makes an unambiguous BET area assignment possible.
Mitochondria play a key role in oncogenesis and constitute one of the most important targets for cancer treatments. Although the most effective way to deliver drugs to mitochondria is by covalently linking them to a lipophilic cation, the in vivo delivery of free drugs still constitutes a critical bottleneck. Herein, we report the design of a mitochondria-targeted metal−organic framework (MOF) that greatly increases the efficacy of a model cancer drug, reducing the required dose to less than 1% compared to the free drug and ca. 10% compared to the nontargeted MOF. The performance of the system is evaluated using a holistic approach ranging from microscopy to transcriptomics. Super-resolution microscopy of MCF-7 cells treated with the targeted MOF system reveals important mitochondrial morphology changes that are clearly associated with cell death as soon as 30 min after incubation. Whole transcriptome analysis of cells indicates widespread changes in gene expression when treated with the MOF system, specifically in biological processes that have a profound effect on cell physiology and that are related to cell death. We show how targeting MOFs toward mitochondria represents a valuable strategy for the development of new drug delivery systems.
Among a plethora of nano‐sized therapeutics, metal‐organic frameworks (MOFs) have been some of the most investigated novel materials for, predominantly, cancer drug delivery applications. Due to their large drug uptake capacities and slow‐release mechanisms, MOFs are desirable drug delivery vehicles that protect and transport sensitive drug molecules to target sites. The inclusion of other guest materials into MOFs to make MOF‐composite materials has added further functionality, from externally triggered drug release to improved pharmacokinetics and diagnostic aids. MOF‐composites are synthetically versatile and can include examples such as magnetic nanoparticles in MOFs for MRI image contrast and polymer coatings that improve the blood‐circulation time. From synthesis to applications, this review will consider the main developments in MOF‐composite chemistry for biomedical applications and demonstrate the potential of these novel agents in nanomedicine. It is concluded that, although vast synthetic progress has been made in the field, it requires now to develop more biomedical expertise with a focus on rational model selection, a major comparative toxicity study, and advanced targeting techniques.
We demonstrate that a photochromic spironaphthoxazine switch operates with excellent fatigue resistance and high conversion when irradiated at 405/561 nm in a range of media including living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.