We present an update and revision to our 2010 review on the topic of protoncoupled electron transfer (PCET) reagent thermochemistry. Over the past decade, the data and thermochemical formalisms presented in that review have been of value to multiple fields. Concurrently, there have been advances in the thermochemical cycles and experimental methods used to measure these values. This Review (i) summarizes those advancements, (ii) corrects systematic errors in our prior review that shifted many of the absolute values in the tabulated data, (iii) provides updated tables of thermochemical values, and (iv) discusses new conclusions and opportunities from the assembled data and associated techniques. We advocate for updated thermochemical cycles that provide greater clarity and reduce experimental barriers to the calculation and measurement of Gibbs free energies for the conversion of X to XH n in PCET reactions. In particular, we demonstrate the utility and generality of reporting potentials of hydrogenation, E°(V vs H 2 ), in almost any solvent and how these values are connected to more widely reported bond dissociation free energies (BDFEs). The tabulated data demonstrate that E°(V vs H 2 ) and BDFEs are generally insensitive to the nature of the solvent and, in some cases, even to the phase (gas versus solution). This Review also presents introductions to several emerging fields in PCET thermochemistry to give readers windows into the diversity of research being performed. Some of the next frontiers in this rapidly growing field are coordination-induced bond weakening, PCET in novel solvent environments, and reactions at material interfaces.
Molybdenum(VI) oxide was deposited on the Zr node of the mesoporous metal-organic framework NU-1000 via condensed-phase deposition where the MOF is simply submerged in the precursor solution, a process named solvothermal deposition in MOFs (SIM). Exposure to oxygen leads to a monodisperse, porous heterogeneous catalyst, named Mo-SIM, and its structure on the node was elucidated both computationally and spectroscopically. The catalytic activity of Mo-SIM was tested for the epoxidation of cyclohexene. Near-quantitative yields of cyclohexene oxide and the ring-opened 1,2-cyclohexanediol were observed, indicating activity significantly higher than that of molybdenum(VI) oxide powder and comparable to that of a zirconia-supported analogue (Mo-ZrO) prepared in a similar fashion. Despite the well-known leaching problem of supported molybdenum catalysts (i.e., loss of Mo species thus causes deactivation), Mo-SIM demonstrated no loss in the metal loading before and after catalysis, and no molybdenum was detected in the reaction mixture. In contrast, Mo-ZrO led to significant leaching and close to 80 wt % loss of the active species. The stability of Mo-SIM was further confirmed computationally, with density functional theory calculations indicating that the dissociation of the molybdenum(VI) species from the node of NU-1000 is endergonic, corroborating the experimental data for the Mo-SIM material.
Copper nanoparticles are embedded into a solvothermally grown thin film of a zirconium metal− organic framework (MOF), NU-1000, by installing singlesite Cu(II) into the NU-1000 thin film via solvothermal deposition in MOFs (SIM) followed by electrochemical reduction of Cu(II) to metallic Cu. The obtained Cu nanoparticles are electrochemically addressable and exhibit promising electrocatalytic activity for CO 2 reduction in an aqueous electrolyte.
Nanoparticle encapsulation inside zirconium-based metal-organic frameworks (NP@MOF) is hard to control and the resulting materials often have non-uniform morphologies with NPs on the external surface of MOFs and NP aggregates inside the MOFs. In this work, we report the controlled encapsulation of gold nanorods (AuNRs) by a scu-topology Zr-MOF, via a room-temperature MOF assembly. This is achieved by functionalizing the AuNRs with polyethylene glycol (PEG) surface ligands, allowing them to retain colloidal stability in the precursor solution and to seed the MOF growth. Using this approach, we achieve core-shell yields exceeding 99%, tuning the MOF particle size via the solution concentration of AuNRs. The functionality of AuNR@MOFs is demonstrated by using the AuNRs as embedded probes for selective surface-enhanced Raman spectroscopy (SERS). The AuNR@MOFs are able to both take-up or block molecules from the pores, thereby facilitating highly-selective sensing at the AuNR ends. This proofof-principle study serves both to present the outstanding level of control in the synthesis as well as the high potential for AuNR@Zr-MOF composites for SERS.
The Zr6-based metal–organic framework NU-1000 was successfully functionalized with candidate catalystsMoS x unitsvia SIM (solvothermal deposition in MOFs) of molybdenum(VI), followed by reaction with H2S gas. The structure of the material, named MoS x -SIM, was characterized spectroscopically and through a single-crystal X-ray diffraction measurement. These measurements and others established that the catalyst is monometallic, with mixed oxygen and sulfur coordination, and that it forms from a MOF-node-supported molybdenum-based cluster featuring only oxy ligands. Notably, the formal potential for the MOF-grafted complex, like that for the metal–sulfur active site of hydrogenase, is nearly coincident with the formal potential for the hydrogen couple. Its effective concentration within the mesoporous MOF is several hundred millimolar, and its porous-framework-based immobilization/heterogenization obviates the need for aqueous solubility as a condition for use as a well-defined catalyst. MoS x -SIM was evaluated as an electrocatalyst for evolution of molecular hydrogen from aqueous acid. Although the MoS x -functionalized framework exhibits catalytic behavior, the highly insulating nature of the support inhibits high electrocatalytic performance. Introduction of an archetypal redox mediator (RM), methyl viologen (MV2+), resulted in more than 20-fold enhancement in its catalytic performance on a turnover frequency basis, implying efficient RM-assisted electron transfer to otherwise electrochemically non-addressable MoS x moieties. Electrochemical kinetic studies with additional viologens as mediators reveal an unexpected square-root dependence of overall reaction rate on mediator concentration, as well as sensitivity to the strength of RM•+ as a reductant. These observations, together with observations of potential-dependent H/D isotope effects and potential-dependent pH effects, provide useful insights into the catalysis mechanism and help to explain how the MOF-affixed monometallic catalyst can effectively catalyze a two-electron reduction reaction, i.e., hydrogen evolution from acidified water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.