Synthesis and activation of phase-pure and defect-free metal–organic frameworks (MOFs) are essential for establishing accurate structure–property relationships.
We report the syntheses, structures, and oxidation catalytic activities of a single-atom-based vanadium oxide incorporated in two highly crystalline MOFs, Hf-MOF-808 and Zr-NU-1000. These vanadium catalysts were introduced by a postsynthetic metalation, and the resulting materials (Hf-MOF-808-V and Zr-NU-1000-V) were thoroughly characterized through a combination of analytic and spectroscopic techniques including single-crystal X-ray crystallography. Their catalytic properties were investigated using the oxidation of 4-methoxybenzyl alcohol under an oxygen atmosphere as a model reaction. Crystallographic and variable-temperature spectroscopic studies revealed that the incorporated vanadium in Hf-MOF-808-V changes position with heat, which led to improved catalytic activity.
Electrical conductivity is engendered in a pyrene containing hexa-zirconium(iv) metal–organic framework by physically encapsulating fullerenes within MOF cavity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.