Molecular morphometrics is an emerging third dimensional aspect of fungal species delimitation. They have been demonstrated to be more informative than conventional barcoding methods. Hence in this study, foliar endophytic fungal (FEF) assemblages in three Magnoliopsida plants were delimited using nuclear ribosomal internal transcribed spacer 2 (ITS2) sequence—secondary structural features based phylogenetic analysis, also known as molecular morphometrics. A total of 392 FEF isolates were obtained from the
Aglaia elaeagnoidea
,
Flacourtia inermis
, and
Premna serratifolia
leaves and grouped into 98 morphotypes. Among these host plants,
P
.
serratifolia
showed the maximum percentage of colonization frequency. Representatives of each morphotype was sequenced and subjected to further molecular characterization. The results revealed that morphotypes were belonged to the phylum of Ascomycota, distributed over two classes (Sordariomycetes (68.59%) and Dothideomycetes (31.41%)), 6 orders and 19 genera. Based on compensatory base changes (CBC) analysis and absolute identity of ITS2 structure, 21, 20 and 23 species were recognized from
A
.
elaeagnoidea
,
F
.
inermis
, and
P
.
serratifolia
respectively. Diversity indices were higher in
A
.
elaeagnoidea
, despite it accounted for a modest 16.8% of total isolates recorded in this study. The genus
Colletotrichum
was predominant in
A
.
elaeagnoidea
(39%) and
P
.
serratifolia
(48%). Similarly,
Diaporthe
(43%) was dominant in
F
.
inermis
. Several host-specific species were also observed. This study concludes that these plants host diverse species of Ascomycota. To the best of our knowledge, this is the first detailed report on FEF diversity from these plants. Also, the inclusion of ITS2 secondary structure information along with the sequence provides a further dimension to resolve the inherent problems in identification of fungal species.
Silver nanoparticles (AgNPs), due to their interesting properties and many potential applications have attracted enormous interests in recent years. An attempt has been made in this present study to synthesize AgNPs through biological reduction of silver nitrate, with leaf extract of Hyptis suaveolens (L) Poit serving as a reducing agent. AgNPs formed were characterized with spectral (UV-Vis, XRD, FTIR) and electron microscopic investigations. Dispersed spherical nanosilver particles in the range of 2 nm-85 nm were observed through microscopic analysis and the crystalline nature was evidenced through XRD analyses. Anticandidal activity of biosynthesised AgNPs was evaluated against two Candida albicans strains. The minimum inhibitory concentration (MIC) values for AgNPs against the two clinical strains were 0.27 � 0.03 μg/ml and 0.97 � 0.13 μg/ml. AgNPs were found to be more effective than the amphotericin-B used as control against the strains of the test pathogens. Scanning electron microscopic (SEM) analyses of the Candida cells treated with AgNPs shows change in the surface morphology, suggesting cell wall disruption to be a potential mode of anticandidal activity. Based on our observations, AgNPs synthesized with leaf extract of Hyptis suaveolens could be potentially used in combating candidal infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.