Core yarn is a type of yarn that has a filament fiber in the center with a different fiber wrapped around it. This type of yarn is of growing importance in the textile industry. It is important to predict the quality characteristics of a core yarn before production to prevent the faulty production of fabrics. Therefore, the development of predictive models is a necessity in the textile industry. In this study, artificial neural network (ANN) and support vector machine (SVM) models are proposed to predict the quality characteristics of cotton/elastane core yarn, using fiber quality and spinning parameters. Principal component analysis and analysis of variance techniques are also used to reduce input dimensions, since high dimensional data may reduce a model’s potential for success in prediction. The prediction models are trained and tested using the data obtained from a textile production plant. The results of all the models are compared with each other on test data. Mean absolute percentage error (MAPE), mean absolute error (MAE) and correlation coefficient (R) are used to assess the prediction power of the models. Although on most of the tests SVM models fared slightly better than ANN models, both models provide accurate predictions for most of the yarn quality characteristics. The results show that the best models have over 90% success rate in MAPE and R. In particular, the Coefficient of Variance of mass (CVm) along the yarn, hairiness and Reisskilometer quality characteristics of the cotton/elastane core yarn are predicted with 91%, 93% and 95% accuracy, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.