Reservoir computing (RC) is a class of neuromorphic computing approaches that deals particularly well with time-series prediction tasks. It significantly reduces the training complexity of recurrent neural networks and is also suitable for hardware implementation whereby device physics are utilized in performing data processing. In this paper, the RC concept is applied to detecting a transmitted symbol in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Due to wireless propagation, the transmitted signal may undergo severe distortion before reaching the receiver. The nonlinear distortion introduced by the power amplifier at the transmitter may further complicate this process. Therefore, an efficient symbol detection strategy becomes critical. The conventional approach for symbol detection at the receiver requires accurate channel estimation of the underlying MIMO-OFDM system. However, in this paper, we introduce a novel symbol detection scheme where the estimation of the MIMO-OFDM channel becomes unnecessary. The introduced scheme utilizes an echo state network (ESN), which is a special class of RC. The ESN acts as a black box for system modeling purposes and can predict nonlinear dynamic systems in an efficient way. Simulation results for the uncoded bit error rate of nonlinear MIMO-OFDM systems show that the introduced scheme outperforms conventional symbol detection methods.
Epilepsy is a disorder of cortical excitability and still an important medical problem. The correct diagnosis of a patient's epilepsy syndrome clarifies the choice of drug treatment and also allows an accurate assessment of prognosis in many cases. The aim of this study is to evaluate epileptic patients and classify epilepsy groups such as partial and primary generalized epilepsy by using Radial Basis Function Neural Network (RBFNN) and Multilayer Perceptron Neural Network (MLPNNs). Four hundred eighteen patients with epilepsy diagnoses according to International League against Epilepsy (ILAE 1981) were included in this study. The correct classification of this data was performed by two expert neurologists before they were executed by neural networks. The neural networks were trained by the parameters obtained from the EEG signals and clinic properties of the patients. Experimental results show that the predictions of both neural network models are very satisfying for learning data sets. According to test results, RBFNN (total classification accuracy = 95.2%) has classified more successfully when compared with MLPNN (total classification accuracy = 89.2%). These results indicate that RBFNN model may be used in clinical studies as a decision support tool to confirm the classification of epilepsy groups after the model is developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.