Abstract:The main purpose of this study was to develop and apply a neural network (NN) approach and an adaptive neuro-fuzzy inference system (ANFIS) model for forecasting the attendance rates at soccer games. The models were designed based on the characteristics of the problem. Past real data was used. Training data was used for training the models, and the testing data was used for evaluating the performance of the forecasting models. The obtained forecasting results were compared to the actual data and to each other. To evaluate the performance of the models, two statistical indicators, Mean Absolute Deviation (MAD) and mean absolute percent error (MAPE), were used. Based on the results, the proposed neural network approach and the ANFIS model were shown to be effective in forecasting attendance at soccer games. The neural network approach performed better than the ANFIS model. The main contribution of this study is to introduce two effective techniques for estimating attendance at sports games. This is the first attempt to use an ANFIS model for that purpose.
An artificial neural network (ANN), adaptive neurofuzzy inference system (ANFIS) models, and fuzzy rule-based system (FRBS) models are developed to predict the attendance demand in European football games, in this paper. To determine the most successful method, each of the methods is analyzed under different situations. The Elman backpropagation, feed-forward backpropagation, and cascade-forward backpropagation network types are developed to determine the outperforming ANN model. The backpropagation and hybrid optimization methods are used for training fuzzy inference system (FIS) to determine the outperforming ANFIS model. The fuzzy logic model is developed after experimenting different forms of membership functions. To this end, the data of 236 soccer games are used to train the ANN and ANFIS models, and 2017/2018 season's data of these clubs are used to test all of the models. The results of all models are compared with each other and real past data. To assess the performance of each model, two error measures that are Mean Absolute Percent Error (MAPE) and Mean Absolute Deviation (MAD) are implemented. These measures reveal that the ANN model that has Elman network type outperforms the other models. Finally, the results emphasize that the proposed ANN model can be effectively used for prediction purposes.
Epilepsy is a disorder of cortical excitability and still an important medical problem. The correct diagnosis of a patient's epilepsy syndrome clarifies the choice of drug treatment and also allows an accurate assessment of prognosis in many cases. The aim of this study is to evaluate epileptic patients and classify epilepsy groups such as partial and primary generalized epilepsy by using Radial Basis Function Neural Network (RBFNN) and Multilayer Perceptron Neural Network (MLPNNs). Four hundred eighteen patients with epilepsy diagnoses according to International League against Epilepsy (ILAE 1981) were included in this study. The correct classification of this data was performed by two expert neurologists before they were executed by neural networks. The neural networks were trained by the parameters obtained from the EEG signals and clinic properties of the patients. Experimental results show that the predictions of both neural network models are very satisfying for learning data sets. According to test results, RBFNN (total classification accuracy = 95.2%) has classified more successfully when compared with MLPNN (total classification accuracy = 89.2%). These results indicate that RBFNN model may be used in clinical studies as a decision support tool to confirm the classification of epilepsy groups after the model is developed.
Pandemic influenza has been considered as a serious international health risk by many health authorities in the world. In mitigating pandemic influenza, effective allocation of limited health resources also plays a critical role along with effective use of medical prevention and treatment procedures. A national resource allocation program for prevention and treatment must be supported with the right allocation decisions for all regions and population risk groups. In this study, we develop a multi-objective mathematical programming model for optimal resource allocation decisions in a country where a serious risk of pandemic influenza may exist. These resources include monetary budget for antivirals and preventive vaccinations, intensive care unit (ICU) beds, ventilators, and non-intensive care unit (non-ICU) beds. The mathematical model has three objectives: minimization of number of deaths, number of cases and total morbidity days during a pandemic influenza. This model can be used as a decision support tool by decision makers to assess the impact of different scenarios such as attack rates, hospitalization and death ratios. These factors are found to be very influential on the allocation of the total budget among preventive vaccination, antiviral treatment and fixed resources. The data set collected from various sources for Turkey is used and analyzed in detail as a case study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.