The application of finding the nearest public facility using 2 methods to measure the distance between 2 points, i.e. the Euclidean Method and the Haversine Formula. Euclidean is a heuristic function obtained based on direct distance without obstacles such as to get the value of the length of a diagonal line on a triangle. Whereas Haversine is an equation that looks for the distance of an arc between two points on longitude and latitude. The results of the calculation of the average distance Euclidean deviations with an average value of data 2.539764, and Haversine 2.536912. This shows that the comparison of the measurements of the distance between Euclidean and Haversine has a difference of 0.002852 or the percentage of the distance between the two methods is 99.89 percent. Of the two methods, which yield values almost by measurements on Google maps is Haversine. For Euclidean, it is used to measure the distance between two points on a flat plane so that the results have differences when compared to the Haversine formula.
Pada penelitian ini akan menggunakan module OpenCV pada bahasa pemrograman python untuk mengenali wajah sesorang yang menggunakan Haar Cascades untuk mengenali bentuk wajah dan mata. Tahapan awal menggunakan open source dari intel untuk data wajah dan mata, dipadukan dengan module cascade classifier pada openCV untuk merubah data menjadi pengenalan bentuk wajah dari titik pada wajah yang dianggap sesuai dengan data yang telah disediakan. Banyak dari beberapa sistem pendeteksian wajah menggunakan metode computer vision sebagai metode pendeteksi objek. Metode computer vision dikenal memiliki kecepatan dan keakuratan yang tinggi karena menggabungkan beberapa konsep (Haar Features, Integral Image, AdaBoost, dan Cascade Classifier) menjadi sebuah metode utama untuk mendeteksi objek. Banyak dari sistem deteksi tersebut menggunakan C atau C++ sebagai bahasa pemrograman, dan OpenCV sebagai librari deteksi objek. Hal ini dikarenakan librari OpenCV menerapkan metode computer vision kedalam sistem deteksinya, sehingga memudahkan dalam pembuatan sistem. Penelitian ini bertujuan untuk mengimplementasikan computer vision ke dalam sistem deteksi wajah sederhana dengan memanfaatkan library yang ada pada OpenCV dan memanfaatkan bahasa pemrograman Python sebagai pondasi sistem.
Untuk mengenal jenis-jenis bentuk tulang daun, telah dibuat sistem untuk membandingkan garis tulang daun beserta garis tepi daun menggunakan metode thresholding. Prosesnya dimulai dengan menginput citra digital daun atau tanaman, selanjutnya dikonversi ke citra grayscale. Kemudian dilakukan proses segmentasi terhadap citra grayscale. Selanjutnya, dipilih hasil segmentasi dan ditandai dengan proses penajaman garis tepi menggunakan operator LOG. Proses terakhir adalah membuat histogram terhadap hasil proses penajaman garis tepi. Hasil segmentasi berhasil membandingkan dan menggolongkan bentuk tulang daun yang diambil menggunakan kamera ponsel pada tanaman di Politeknik Pertanian Negeri Samarinda dengan cara thresholding dengan hasil segmentasi citra daun yang telah digolongkan berdasarkan bentuk tulang daunnya dengan cara thresholding pula. Keseluruhan proses ini dilakukan dengan menggunakan MATLAB 2008.
Papaya is one of the fruits commodity that grow in the plateau and lowlands. It makes papaya vulnerable to pests and diseases that impedes optimal yields. In this study, an expert sistem was build that was able to store a knowledge base for the diagnosis of pests and diseases of papaya plants. A method of information retrieval is needed that the knowledge base becomes dynamic. Forward Chaining is a method of finding knowledge that starts with existing information and combines rules to produce a conclusion. The Best First Search technique is used for fact finding to obtain optimal results. Forward Chaining method that was build in expert sistems allow the sistem to perform the simple searching result on the database facts. The knowledge was obtained from experts. Web-based expert sistem has 6 pest data and 7 disease data, 41 pest and disease symptom data, and also 12 treatment techniques. Fifty data of papaya trees that had been sustained by disease were used in the test. The test results showed a sistem accuracy is 96% compared to experts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.