Ultra‐wide bandgap semiconductor samarium oxide attracts great interest because of its high stability and electronic properties. However, the ionic transport properties of Sm2O3 have rarely been studied. In this work, Ni doping is proposed to be used for electronic structure engineering of Sm2O3. The formation of Ni‐doping defects lowers the Fermi level to induce a local electric field, which greatly enhances the proton transport at the surface. Furthermore, ascribed to surface modification, the high concentration of vacancies and lattice disorder on the surface layer promote proton transport. A high‐performance of 1438 mW cm–2 and ionic conductivity of 0.34 S cm–1 at 550 °C have been achieved using 3% mol Ni doped Sm2O3 as electrolyte for fuel cells. The well‐dispersed Ni doped surface in Sm2O3 builds up continuous surfaces as proton channels for high‐speed transport. In this work, a new methodology is presented to develop high‐performance, low‐temperature ceramic fuel cells.
Fuel cells are highly efficient and green power sources. The typical membrane electrode assembly is necessary for common electrochemical devices. Recent research and development in solid oxide fuel cells have opened up many new opportunities based on the semiconductor or its heterostructure materials. Semiconductor-based fuel cells (SBFCs) realize the fuel cell functionality in a much more straightforward way. This work aims to discuss new strategies and scientific principles of SBFCs by reviewing various novel junction types/interfaces, i.e., bulk and planar p-n junction, Schottky junction, and n-i type interface contact. New designing methodologies of SBFCs from energy band/alignment and built-in electric field (BIEF), which block the internal electronic transport while assisting interfacial superionic transport and subsequently enhance device performance, are comprehensively reviewed. This work highlights the recent advances of SBFCs and provides new methodology and understanding with significant importance for both fundamental and applied R&D on new-generation fuel cell materials and technologies.
Multifunctional semiconductor cubic silicon carbide (3C-SiC) is employed for fuel cell electrolyte, which has never been used before. n-type 3C-SiC can be individually employed as the electrolyte in fuel cells, but delivers insufficient open circuit voltage and minuscule current density due to its electronic dominant property. By introducing n-type ZnO to form an n–n 3C-SiC/ZnO heterostructure, significant enhancements in the ionic conductivity of 0.12 S/cm and fuel cell performance of 270 mW cm−2 are achieved at 550 °C. It is found that the energy band bending and build-in electric field of the heterostructure play the pivotal role in the ionic transport and suppressing the electronic conduction of 3C-SiC, leading to a markable material ionic property and fuel cell performance. These findings suggest that 3C-SiC can be tuned to ionic conducting electrolyte for fuel cell applications through the heterostructure approach and energy band alignment methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.