This study is the first to confirm that the degree of blastocoele expansion and re-expansion is a better predictor of live birth after both fresh and vitrified/warmed single blastocyst transfer cycles than ICM or TE grade.
BackgroundThe effect of progesterone elevation (PE) on the day of human chorionic gonadotropin (hCG) administration on the pregnancy outcomes of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles is a matter of ongoing debate. The replacement of cleavage-stage embryos with blastocyst-stage embryos for transfer was proposed to avoid the possible impairment of PE in fresh cycles. This study aimed to assess the association between PE on the day of human chorionic gonadotropin (hCG) administration and clinical pregnancy rates (CPRs) in IVF/ICSI cycles with embryos transferred at different developmental stages (cleavage and blastocyst). Moreover, a secondary aim was to determine the thresholds at which PE has a detrimental effect on CPRs.MethodsThis single-center retrospective cohort study included more than 10,000 patients undergoing day 3 cleavage-stage embryo transfer (ET) and 1146 patients undergoing day 5 blastocyst-stage embryo transfer (ET) using gonadotropin and GnRH agonist for controlled ovarian stimulation.ResultsSerum PE was inversely associated with CPRs in both cleavage- and blastocyst-stage ET cycles. In the day 3 ET cycles, CPRs (progesterone levels < 0.5 ng/ml, 49.2 %) significantly declined when the progesterone concentration reached 1.0 ng/ml (45.5 %) and decreased further when the progesterone concentration increased to 1.5 ng/ml (36.2 %). In the day 5 blastocyst-stage ET cycles, patients with serum progesterone levels ≥1.75 ng/ml had significantly lower CPRs (31.3 % VS. 41.4 %, p < 0.001) compared to patients with serum progesterone levels <1.75 ng/ml. The negative association of PE with CPRs was noted in both ET groups, even after adjusting for confounders. Furthermore, the developmental stage of the transferred embryos was not linked to the effect of PE on CPRs because the interaction between the developmental stage of the transferred embryos and PE was not significant.ConclusionsPE on the day of hCG administration is associated with decreased CPRs in GnRH agonist IVF/intracytoplasmic sperm injection (ICSI) cycles regardless of the developmental stage of the transferred embryos (cleavage versus blastocyst stage).
Fibroblast growth factor (FGF) and epidermal growth factor (EGF) are critical for the development of the nervous system. We previously discovered that FGF2 and EGF had opposite effects on motor neuron differentiation from human fetal neural stem cells (hNSCs), but the underlying mechanisms remain unclear. Here, we show that FGF2 and EGF differentially affect the temporal patterns of Akt and glycogen synthase kinase 3 beta (GSK3β) activation. High levels of phosphatidylinositol 3-kinase (PI3K)/Akt activation accompanied with GSK3β inactivation result in reduction of the motor neuron transcription factor HB9. Inhibition of PI3K/Akt by chemical inhibitors or RNA interference or overexpression of a constitutively active form of GSK3β enhances HB9 expression. Consequently, PI3K inhibition increases hNSCs differentiation into HB9+/microtubule-associated protein 2 (MAP2)+ motor neurons in vitro. More importantly, blocking PI3K not only enhances motor neuron differentiation from hNSCs grafted into the ventral horn of adult rat spinal cords, but also permits ectopic generation of motor neurons in the dorsal horn by overriding environmental influences. Our data suggest that FGF2 and EGF affect the motor neuron fate decision in hNSCs differently through a fine tuning of the PI3K/AKT/GSK3β pathway, and that manipulation of this pathway can enhance motor neuron generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.