Combining aberration corrected high resolution transmission electron microscopy and density functional theory calculations we propose an explanation of the antisurfactant effect of Si in GaN growth. We identify the atomic structure of a Si delta-doped layer (commonly called SiN(x) mask) as a SiGaN(3) monolayer that resembles a √3×√3 R30° surface reconstruction containing one Si atom, one Ga atom, and a Ga vacancy (V(Ga)) in its unit cell. Our density functional theory calculations show that GaN growth on top of this SiGaN(3) layer is inhibited by forming an energetically unfavorable electrical dipole moment that increases with layer thickness and that is caused by charge transfer between cation dangling bonds at the surface to V(Ga) bound at subsurface sites.
The structural defects in two-dimensional transition metal dichalcogenides, including point defects, dislocations and grain boundaries, are scarcely considered regarding their potential to manipulate the electrical and optical properties of this class of materials, notwithstanding the significant advances already made. Indeed, impurities and vacancies may influence the exciton population, create disorder-induced localization, as well as modify the electrical behaviour of the material. Here we report on the experimental evidence, confirmed by ab initio calculations, that sulfur vacancies give rise to a novel near-infrared emission peak around 0.75 eV in exfoliated MoS2 flakes. In addition, we demonstrate an excess of sulfur vacancies at the flake's edges by means of cathodoluminescence mapping, aberration-corrected transmission electron microscopy imaging and electron energy loss analyses. Moreover, we show that ripplocations, extended line defects peculiar to this material, broaden and redshift the MoS2 indirect bandgap emission.
Silicon, the mainstay semiconductor in microelectronic circuitry, is considered unsuitable for optoelectronic applications owing to its indirect electronic band gap, which limits its efficiency as a light emitter. Here we show the light emission properties of boron-doped wurtzite silicon nanowires measured by cathodoluminescence spectroscopy at room temperature. A visible emission, peaked above 1.5 eV, and a near infra-red emission at 0.8 eV correlate respectively to the direct transition at the Γ point and to the indirect band-gap of wurtzite silicon. We find additional intense emissions due to boron intra-gap states in the short wavelength infra-red range. We present the evolution of the light emission properties as function of the boron doping concentration and the growth temperature.
Films of magnetic Ni@NiO core-shell nanoparticles (NPs, core diameter d ≅ 12 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness t(s) could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopy (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field H(bias) is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core-shell NPs with desired magnetic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.