Foot-and-mouth disease (FMD) virus causes an acute vesicular disease of domesticated and wild ruminants and pigs. Identifying sources of FMD outbreaks is often confounded by incomplete epidemiological evidence and the numerous routes by which virus can spread (movements of infected animals or their products, contaminated persons, objects, and aerosols). Here, we show that the outbreaks of FMD in the United Kingdom in August 2007 were caused by a derivative of FMDV O1 BFS 1860, a virus strain handled at two FMD laboratories located on a single site at Pirbright in Surrey. Genetic analysis of complete viral genomes generated in real-time reveals a probable chain of transmission events, predicting undisclosed infected premises, and connecting the second cluster of outbreaks in September to those in August. Complete genome sequence analysis of FMD viruses conducted in real-time have identified the initial and intermediate sources of these outbreaks and demonstrate the value of such techniques in providing information useful to contemporary disease control programmes.
We analyzed the highly pathogenic avian influenza (HPAI) H5 epizootic of 2016–17 in Europe by epidemiologic and genetic characteristics and compared it with 2 previous epizootics caused by the same H5 Guangdong lineage. The 2016–17 epizootic was the largest in Europe by number of countries and farms affected and greatest diversity of wild birds infected. We observed significant differences among the 3 epizootics regarding region affected, epidemic curve, seasonality, and outbreak duration, making it difficult to predict future HPAI epizootics. However, we know that in 2005–06 and 2016–17 the initial peak of wild bird detections preceded the peak of poultry outbreaks within Europe. Phylogenetic analysis of 2016–17 viruses indicates 2 main pathways into Europe. Our findings highlight the need for global surveillance of viral changes to inform disease preparedness, detection, and control.
We detected influenza D virus in 18 nasal swab samples from cattle in Ireland that were clinically diagnosed with respiratory disease. Specimens were obtained from archived samples received for routine diagnosis during 2014–2016. Sequencing showed that viruses from Ireland clustered with virus sequences obtained in Europe within the D/swine/OK/1334/2011 clade.
Bovine tuberculosis (bTB) is an infectious disease of cattle generally caused by Mycobacterium bovis , a bacterium that can elicit disease humans. Since the 1950s, the objective of the national bTB eradication program in Republic of Ireland was the biological extinction of bTB; that purpose has yet to be achieved. Objectives of the present study were to develop the statistical methodology and variance components to undertake routine genetic evaluations for resistance to bTB; also of interest was the detection of regions of the bovine genome putatively associated with bTB infection in dairy and beef breeds. The novelty of the present study, in terms of research on bTB infection, was the use of beef breeds in the genome-wide association and the utilization of imputed whole genome sequence data. Phenotypic bTB data on 781,270 animals together with imputed whole genome sequence data on 7,346 of these animals’ sires were available. Linear mixed models were used to quantify variance components for bTB and EBVs were validated. Within-breed and multi-breed genome-wide associations were undertaken using a single-SNP regression approach. The estimated genetic standard deviation (0.09), heritability (0.12), and repeatability (0.30) substantiate that genetic selection help to eradicate bTB. The multi-breed genome-wide association analysis identified 38 SNPs and 64 QTL regions associated with bTB infection; two QTL regions (both on BTA23) identified in the multi-breed analysis overlapped with the within-breed analyses of Charolais, Limousin, and Holstein-Friesian. Results from the association analysis, coupled with previous studies, suggest bTB is controlled by an infinitely large number of loci, each having a small effect. The methodology and results from the present study will be used to develop national genetic evaluations for bTB in the Republic of Ireland. In addition, results can also be used to help uncover the biological architecture underlying resistance to bTB infection in cattle.
A case of foot-and-mouth disease (fmd) on a cattle farm in Normandy, Surrey, was confirmed on Friday August 3, 2007, the first case in the uk since 2001. The infection was detected nearby on a second farm on August 6. On September 12, fmd was confirmed on a farm approximately 20 km from Normandy in Egham, and this was followed by cases on five more farms in that area in the next three weeks. The majority of the infected farms consisted of multiple beef cattle holdings in semi-urban areas. In total, 1578 animals were culled on the infected farms, and fmd virus infection was confirmed in 278 of them by the detection of viral antigen, genome or antibodies to the virus, or by clinical signs. This paper describes the findings from animal inspections on the infected farms, including the estimated ages of the fmd lesions and the numbers of animals infected. It also summarises the test results from samples taken for investigation, including the detection of preclinically viraemic animals by using real-time reverse transcriptase-pcr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.