The terahertz (THz)-wave absorption properties in organic-inorganic hybrid perovskite (OHP) materials are investigated with the in-depth development of OHP-based THz applications. In the THz range from 0.5 to 3 THz, OHPs typically show several interesting phonon modes such as transverse, longitudinal, and halogen self-vibrations. To modulate these frequencies, the density changes in defect-incorporated structures and element mixtures were tested and confirmed. In the literature, the origin of phonon modes in OHP materials have been mostly explained. However, we found new phonon vibration modes in formamidinium (FA)-based hybrid perovskite structures. FAPbI3 single crystals, organic–inorganic hybrid perovskites, of the δ-, δ/α-mixed-, and α-phases were prepared. We intriguingly found that the δ/α-mixed-phase exhibited significant THz-wave absorption peaks at 2.0 and 2.2 THz that were not related to any phonon modes from either the δ- or α-phases, although the δ/α-mixed-phase sample was confirmed to be formed by a physical combination of the δ- and α-phases without the creation of any new chemical states. Our theoretical study performed with ab initio calculations provides an explanation for these unusual THz-wave absorption behaviors; they originate from the novel vibration modes excited at the seamless interfaces in the mixed phase of FAPbI3.
Organometal perovskite single crystals have been recognized as a promising platform for high-performance optoelectronic devices, featuring high crystallinity and stability. However, a high trap density and structural nonuniformity at the surface have been major barriers to the progress of single crystal-based optoelectronic devices. Here, the formation of a unique nanoisland structure is reported at the surface of the facet-controlled cuboid MAPbI 3 (MA = CH 3 NH 3 +) single crystals through a cation interdiffusion process enabled by energetically vaporized CsI. The interdiffusion of mobile ions between the bulk and the surface is triggered by thermally activated CsI vapor, which reconstructs the surface that is rich in MA and CsI with reduced dangling bonds. Simultaneously, an array of Cs-Pb-rich nanoislands is constructed on the surface of the MAPbI 3 single crystals. This newly reconstructed nanoisland surface enhances the light absorbance over 50% and increases the charge carrier mobility from 56 to 93 cm 2 V −1 s −1 . As confirmed by Kelvin probe force microscopy, the nanoislands form a gradient band bending that prevents recombination of excess carriers, and thus, enhances lateral carrier transport properties. This unique engineering of the single crystal surface provides a pathway towards developing high-quality perovskite single-crystal surface for optoelectronic applications.
Self‐Assembled Perovskite Nanoislands In article number 2105542, Jung‐Ho Yun, Jae Sung Yun, Lianzhou Wang, and co‐workers report an energetic surface engineering strategy to restructure non‐uniform CH3NH3PbI3 perovskite crystal surfaces. By thermally evaporating energetic CsI on single crystal surfaces, a unique nano‐island structure is formed through a cation interdiffusion process. This morphology induces a gradient band bending, which increases the charge carrier mobility by 60.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.