In general, iodinated contrast media (CM) are tolerated well, and CM use is steadily increasing. Acute kidney injury is the leading life-threatening side effect of CM. Here, we highlight endpoints used to assess CM-induced acute kidney injury (CIAKI), CM types, risk factors, and CIAKI prevention. Moreover, we put forward a unifying theory as to how CIAKI comes about; the kidney medulla's unique hyperosmolar environment concentrates CM in the tubules and vasculature. Highly concentrated CM in the tubules and vessels increases fluid viscosity. Thus, flow through medullary tubules and vessels decreases. Reducing the flow rate will increase the contact time of cytotoxic CM with the tubular epithelial cells and vascular endothelium, and thereby damage cells and generate oxygen radicals. As a result, medullary vasoconstriction takes place, causing hypoxia. Moreover, the glomerular filtration rate declines due to congestion of highly viscous tubular fluid. Effective prevention aims at reducing the medullary concentration of CM, thereby diminishing fluid viscosity. This is achieved by generous hydration using isotonic electrolyte solutions. Even forced diuresis may prove efficient if accompanied by adequate volume supplementation. Limiting the CM dose is the most effective measure to diminish fluid viscosity and to reduce cytotoxic effects.
Contrast-induced acute kidney injury (CIAKI) occurs in up to 30% of patients who receive iodinated contrast media and is generally considered to be the third most common cause of hospital-acquired AKI. Accurate assessment of the incidence of CIAKI is obscured, however, by the use of various definitions for diagnosis, the different populations studied and the prophylactic measures put in place. A deeper understanding of the mechanisms that underlie CIAKI is required to enable reliable risk assessment for individual patients, as their medical histories will determine the specific pathways by which contrast media administration might lead to kidney damage. Here, we highlight common triggers that prompt the development of CIAKI and the subsequent mechanisms that ultimately cause kidney damage. We also discuss effective protective measures, such as rapidly acting oral hydration schemes and loop diuretics, in the context of CIAKI pathophysiology. Understanding of how CIAKI arises in different patient groups could enable a marked reduction in incidence and improved outcomes. The ultimate goal is to shape CIAKI prevention strategies for individual patients.
Intraoperative avoidance of the extremes of anaemia, especially during severe hypotension and avoidance of transfusion in patients with haemoglobin levels >8 g/dL (>5 mmol/L) may help decrease AKI in patients undergoing cardiac surgery and represent targets for future controlled interventions.
Renal tissue hypoperfusion and hypoxia are key elements in the pathophysiology of acute kidney injury and its progression to chronic kidney disease. Yet, in vivo assessment of renal haemodynamics and tissue oxygenation remains a challenge. Many of the established approaches are invasive, hence not applicable in humans. Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) offers an alternative. BOLD-MRI is non-invasive and indicative of renal tissue oxygenation. Nonetheless, recent (pre-) clinical studies revived the question as to how bold renal BOLD-MRI really is. This review aimed to deliver some answers. It is designed to inspire the renal physiology, nephrology and imaging communities to foster explorations into the assessment of renal oxygenation and haemodynamics by exploiting the powers of MRI. For this purpose, the specifics of renal oxygenation and perfusion are outlined. The fundamentals of BOLD-MRI are summarized. The link between tissue oxygenation and the oxygenation-sensitive MR biomarker T2∗ is outlined. The merits and limitations of renal BOLD-MRI in animal and human studies are surveyed together with their clinical implications. Explorations into detailing the relation between renal T2∗ and renal tissue partial pressure of oxygen (pO2 ) are discussed with a focus on factors confounding the T2∗ vs. tissue pO2 relation. Multi-modality in vivo approaches suitable for detailing the role of the confounding factors that govern T2∗ are considered. A schematic approach describing the link between renal perfusion, oxygenation, tissue compartments and renal T2∗ is proposed. Future directions of MRI assessment of renal oxygenation and perfusion are explored.
Contrast-induced nephropathy is a common cause of acute renal failure, and the mechanisms underlying this injury are not completely understood. We sought to determine how physicochemical properties of contrast media may contribute to kidney damage in rats. We administered contrast media of equivalent iodine concentrations but differing physiocochemical properties: the high-osmolality iopromide was compared to the high-viscosity iodixanol. In addition, the non-iodinated substances mannitol (equivalent osmolality to iopromide) and dextran (equivalent viscosity to iodixanol) were also studied. Both types of contrast media transiently increased renal and hindquarter blood flow. The high-osmolality agents iopromide and mannitol markedly increased urine production whereas iodixanol, which caused less diuresis, significantly enhanced urine viscosity. Only the high-viscosity agents iodixanol and dextran decreased renal medullary blood flux, erythrocyte concentration, and pO 2 . Moreover, iodixanol prolonged the tubuloglomerular feedback response and increased plasma creatinine levels to a greater extent than iopromide or dextran. Therefore, the viscosity of contrast media may play a significant role in contrast-induced nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.