Autonomous unmanned aerial vehicles (UAVs) have attracted increasing academic and industrial attention during the last decade. Using drones have broad benefits in diverse areas, such as civil and military applications, aerial photography and videography, mapping and surveying, agriculture, and disaster management. However, the recent development and innovation in the field of drone (UAV) technology have led to malicious usage of the technology, including the penetration of secure areas (such as airports) and serving terrorist attacks. Autonomous weapon systems might use drone swarms to perform more complex military tasks. Utilizing a large number of drones, simultaneously increases the risk and the reliability of the mission in terms of redundancy, survivability, scalability, and the quality of autonomous performance in a complex environment. This research suggests a new approach for drone swarm characterization and detection using RF signals analysis and various machine learning methods. While most of the existing drone detection and classification methods are typically related to a single drone classification, using supervised approaches, this research work proposes an unsupervised approach for drone swarm characterization. The proposed method utilizes the different radio frequency (RF) signatures of the drone’s transmitters. Various kinds of frequency transform, such as the continuous, discrete, and wavelet scattering transform, have been applied to extract RF features from the radio frequency fingerprint, which have then been used as input for the unsupervised classifier. To reduce the input data dimension, we suggest using unsupervised approaches such as Principal component analysis (PCA), independent component analysis (ICA), uniform manifold approximation and projection (UMAP), and the t-distributed symmetric neighbor embedding (t-SNE) algorithms. The proposed clustering approach is based on common unsupervised methods, including K-means, mean shift, and X-means algorithms. The proposed approach has been evaluated using self-built and common drone swarm datasets. The results demonstrate a classification accuracy of about 95% under additive Gaussian white noise with different levels of SNR.
The usage of RISC-based embedded processors, aimed at low cost and low power, is becoming an increasingly popular ecosystem for both hardware and software development. High performance yet low power embedded processors may be attained via the use of hardware acceleration and Instruction Set Architecture (ISA) extension. Efficient mapping of the computational load onto hardware and software resources is a key challenge for performance improvement while still keeping low power and area. Furthermore, exploring performance at an early stage of the design makes this challenge more difficult. Potential hardware accelerators can be identified and extracted from the high-level source code by graph analysis to enumerate common patterns. A scheduling algorithm is used to select an optimized sub-set of accelerators to meet real-time constraints. This paper proposes an efficient hardware/software codesign partitioning methodology applied to high-level programming language at an early stage of the design. The proposed methodology is based on graph analysis. The applied algorithms are presented by a synchronous directed acyclic graph. A constraint-driven method and unique scheduling algorithm are used for graph partitioning to obtain overall speedup and area requirements. The proposed hardware/software partitioning methodology has been evaluated for MLPerf Tiny benchmark. Experimental results demonstrate a speedup of up to 3 orders of magnitude compared to software-only implementation. For example, the resulting runtime for the KWS (Keyword Spotting) software implementation is reduced from 206 sec to only 181ms using the proposed hardware-acceleration approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.