Genes for cell division have been identified in Escherichia coli by the isolation of conditional lethal mutations that block cell division, but do not affect DNA replication or segregation. Of these genes, ftsZ is of great interest as it acts earliest in the division pathway, is essential, its level dictates the frequency of division, and it is thought to be the target of two cell-division inhibitors, SulA, produced in response to DNA damage, and MinCD, which prevents division at old sites. Here we have used immunoelectronmicroscopy to localize the FtsZ protein to the division site. The results suggest that FtsZ self-assembles into a ring structure at the future division site and may function as a cytoskeletal element. The formation of this ring may be the point at which division is regulated.
Nucleation of branched actin filaments by the Arp2/3 complex is a conserved process in eukaryotic cells, yet the source of unbranched actin filaments has remained obscure. In yeast, formins stimulate assembly of actin cables independently of Arp2/3. Here, the conserved core of formin homology domains 1 and 2 of Bni1p (Bni1pFH1FH2) was found to nucleate unbranched actin filaments in vitro. Bni1pFH2 provided the minimal region sufficient for nucleation. Unique among actin nucleators, Bni1pFH1FH2 remained associated with the growing barbed ends of filaments. This combination of properties suggests a direct role for formins in regulating nucleation and polarization of unbranched filamentous actin structures.
In Saccharomyces cerevisiae, the mother cell and bud are connected by a narrow neck. The mechanism by which this neck is closed during cytokinesis has been unclear. Here we report on the role of a contractile actomyosin ring in this process. Myo1p (the only type II myosin in S. cerevisiae) forms a ring at the presumptive bud site shortly before bud emergence. Myo1p ring formation depends on the septins but not on F-actin, and preexisting Myo1p rings are stable when F-actin is depolymerized. The Myo1p ring remains in the mother–bud neck until the end of anaphase, when a ring of F-actin forms in association with it. The actomyosin ring then contracts to a point and disappears. In the absence of F-actin, the Myo1p ring does not contract. After ring contraction, cortical actin patches congregate at the mother–bud neck, and septum formation and cell separation rapidly ensue. Strains deleted for MYO1 are viable; they fail to form the actin ring but show apparently normal congregation of actin patches at the neck. Some myo1Δ strains divide nearly as efficiently as wild type; other myo1Δ strains divide less efficiently, but it is unclear whether the primary defect is in cytokinesis, septum formation, or cell separation. Even cells lacking F-actin can divide, although in this case division is considerably delayed. Thus, the contractile actomyosin ring is not essential for cytokinesis in S. cerevisiae. In its absence, cytokinesis can still be completed by a process (possibly localized cell–wall synthesis leading to septum formation) that appears to require septin function and to be facilitated by F-actin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.