Glioma constitutes the most aggressive primary intracranial malignancy in adults. We previously showed that long noncoding RNA activated by TGF-β (lncRNA-ATB) promoted the glioma cells invasion. However, whether lncRNA-ATB is involved in TGF-β-mediated invasion of glioma cells remains unknown. In this study, quantitative real-time polymerase chain reaction and western blot analysis were used for detecting the mRNA and protein expression of related genes, respectively. Transwell assay was performed to assess the impact of lncRNA-ATB on TGF-β-induced glioma cells migration and invasion. Immunofluorescence staining was utilized to characterize related protein distribution. Results showed that TGF-β upregulated lncRNA-ATB expression in glioma LN-18 and U251 cells. Overexpression of lncRNA-ATB activated nuclear factor-κB (NF-κB) pathway and promoted P65 translocation into the nucleus, thus facilitated glioma cells invasion stimulated by TGF-β. Similarly, lncRNA-ATB markedly enhanced TGF-β-mediated invasion of glioma cells through activation P38 mitogen-activated protein kinase (P38/MAPK) pathway. Moreover, both the NF-κB selected inhibitor pyrrolidinedithiocarbamate ammonium and P38/MAPK specific inhibitor SB203580 partly reversed lncRNA-ATB induced glioma cells invasion mediated by TGF-β. Collectively, this study revealed that lncRNA-ATB promotes TGFβ-induced glioma cell invasion through NF-κB and P38/MAPK pathway and established a detailed framework for understanding the way how lncRNA-ATB performs its function in TGF-β-mediated glioma invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.