We have monitored the flat spectrum radio quasar, 3C 279, in the optical B, V , R and I passbands from 2018 February to 2018 July for 24 nights, with a total of 716 frames, to study flux, colour and spectral variability on diverse timescales. 3C 279 was observed using seven different telescopes: two in India, two in Argentina, two in Bulgaria and one in Turkey to understand the nature of the source in optical regime. The source was found to be active during the whole monitoring period and displayed significant flux variations in B, V , R, and I passbands. Variability amplitudes on intraday basis varied from 5.20% to 17.9%. A close inspection of variability patterns during our observation cycle reveals simultaneity among optical emissions from all passbands. During the complete monitoring period, progressive increase in the amplitude of variability with frequency was detected for our target. The amplitudes of variability in B, V , R and I passbands have been estimated to be 177%, 172%, 171% and 158%, respectively. Using the structure function technique, we found intraday timescales ranging from ∼ 23 minutes to about 115 minutes. We also studied colour-magnitude relationship and found indications of mild bluer-when-brighter trend on shorter timescales. Spectral indices ranged from 2.3 to 3.0 with no clear trend on long term basis. We have also generated spectral energy distributions for 3C 279 in optical B, V , R and I passbands for 17 nights. Finally, possible emission mechanisms causing variability in blazars are discussed briefly.
Context. The TeV BL Lac object PG 1553+113 is one of the primary candidates for a binary supermassive black hole system. Aims. We study the flux and spectral variability of PG 1553+113 on intra-night to long-term timescales using (i) BVRI data collected over 76 nights from January 2016 to August 2019 involving nine optical telescopes and (ii) historical VR data (including ours) obtained for the period from 2005 to 2019. Methods. We analysed the light curves using various statistical tests, fitting and cross-correlation techniques, and methods for the search for periodicity. We examined the colour-magnitude diagrams before and after the corresponding light curves were corrected for the long-term variations. Results. Our intra-night monitoring, supplemented with literature data, result in a low duty cycle of ∼(10–18)%. In April 2019, we recorded a flare, which marks the brightest state of PG 1553+113 for the period from 2005 to 2019: R ≃ 13.2 mag. This flare is found to show a clockwise spectral hysteresis loop on its VR colour-magnitude diagram and a time lag in the sense that the V-band variations lead the R-band ones. We obtain estimates of the radius, the magnetic field strength, and the electron energy that characterize the emission region related to the flare. We find a median period of (2.21 ± 0.04) years using the historical light curves. In addition, we detect a secondary period of about 210 days using the historical light curves corrected for the long-term variations. We briefly discuss the possible origin of this period.
In this study, a new Galactic novae catalogue is introduced collecting important parameters of these sources such as their light curve parameters, classifications, full width half maximum (FWHM) of H α line, distances and interstellar reddening estimates. The catalogue is also published on a website with a search option via a SQL query and an online tool to re-calculate the distance/reddening of a nova from the derived reddening-distance relations. Using the novae in the catalogue, the existence of a maximum magnitude-rate of decline (MMRD) relation in the Galaxy is investigated. Although an MMRD relation was obtained, a significant scattering in the resulting MMRD distribution still exists. We suggest that the MMRD relation likely depends on other parameters in addition to the decline time, as FWHM H α , the light curve shapes. Using two different samples depending on the distances in the catalogue and from the derived MMRD relation, the spatial distributions of Galactic novae as a function of their spectral and speed classes were studied. The investigation on the Galactic model parameters implies that best estimates for the local outburst density are 3.6 and 4.2 ×10 −10 pc −3 yr −1 with a scale height of 148 and 175 pc, while the space density changes in the range of 0.4 − 16 × 10 −6 pc −3 . The local outburst density and scale height obtained in this study infer that the disk nova rate in the Galaxy is in the range of ∼ 20 to ∼ 100 yr −1 with an average estimate 67 +21 −17 yr −1 .
We report the results from our study of the blazar S5 1803+784 carried out using quasi-simultaneous B, V, R, and I observations from 2020 May to 2021 July on 122 nights. Our observing campaign detected a historically bright optical flare during MJD 59,063.5−MJD 59,120.5. We also found the source in its brightest (R mag = 13.617) and faintest (R mag = 15.888) states to date. On 13 nights, covering both flaring and nonflaring periods, we searched for intraday variability using the power-enhanced F-test and the nested ANOVA test. We found significant variability in 2 of these 13 nights. However, no such variability was detected during the flaring period. From correlation analysis, we observed that the emission in all optical bands were strongly correlated with a time lag of ∼0 days. To get insights into its dominant emission mechanisms, we generated the optical spectral energy distributions of the source on 79 nights and estimated the spectral indices by fitting a simple power law. The spectral index varied from 1.392 to 1.911 and showed significant variations with time and R-band magnitude. We detected a mild bluer-when-brighter (BWB) trend during the whole monitoring period and a much stronger BWB trend during the flare. We also carried out a periodicity search using four different methods and found no significant periodicity during our observation period. Based on the analysis during the flaring state of the source one can say that the emissions most likely originate from the jet rather than from the accretion disk.
We present an analysis of the BV RI photometry of the blazar BL Lacertae on diverse timescales from mid-July to mid-September 2020. We have used 11 different optical telescopes around the world and have collected data over 84 observational nights. The observations cover the onset of a new activity phase of BL Lacertae started in August 2020 (termed as the August 2020 flare by us), and the analysis is focused on the intra-night variability. On short-term timescales, (i) flux varied with ∼2.2 mag in R band, (ii) the spectral index was found to be weakly dependent on the flux, that is the variations could be considered mildly chromatic, and (iii) no periodicity was detected. On intra-night timescales, BL Lacertae was found to show bluer-when-brighter chromatism predominantly. We also found two cases of significant inter-band time lags of the order of a few minutes. The duty cycle of the blazar during the August 2020 flare was estimated to be quite high (∼90% or higher). We decomposed the intra-night light curves into individual flares and determined their characteristics. On the base of our analysis and assuming the turbulent jet model, we determined some characteristics of the emitting regions: Doppler factor, magnetic field strength, electron Lorentz factor, and radius. The radii determined were discussed in the framework of the Kolmogorov theory of turbulence. We also estimated the weighted mean structure function slope on intra-night timescales, related it to the slope of the power spectral density, and discussed it regarding the origin of intra-night variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.