Reliable physiological markers for performance evaluation in sport horses are missing. To determine the diagnostic value of plasma ACTH and cortisol measurements in the warmblood horse, 10 initially 3-yr-old geldings of the Hannovarian breed were either exposed to a training schedule or served as controls. During experimental Phase 1, horses were group-housed, and half of the horses were trained for 20 wk on a high-speed treadmill. During Phase 2, groups were switched and one group was trained for 10 wk as during Phase 1, whereas the control group was confined to boxes. During Phase 3 horses were initially schooled for riding. Thereafter, all horses were regularly schooled for dressage and jumping, and half of the horses received an additional endurance training for 24 wk. During all phases horses were exposed at regular intervals to various standardized treadmill exercise tests. During and after the tests frequent blood samples were taken from an indwelling jugular catheter for determination of ACTH and cortisol. Treadmill exercise increased both hormones. Maximum ACTH concentrations were recorded at the end of exercise, and maximum cortisol levels were recorded 20 to 30 min later. Except for one test there were no differences in ACTH levels between trained horses and controls. There was no significant effect of training on the cortisol response (net increase) to treadmill exercise in any of the tests during Phase 1. During Phase 2 higher cortisol responses were recorded in controls than in trained horses (P < .05) after 10 wk of training (controls confined to boxes). During Phase 3 plasma cortisol responses were also higher in controls than in trained horses (P < .05 after 6, 18, and 24, P < or = .07 after 12 wk of training) when the inclination of the treadmill was 5%, but not at 3%. There was no overlap in net cortisol responses at 30 min between trained and untrained horses. An ACTH application after 24 wk of training resulted in higher cortisol responses in controls than in trained horses (P < or = .05), without any overlap between the groups at 30 min after ACTH. Plasma cortisol responses to either treadmill exercise or ACTH injection may be a reliable physiological marker for performance evaluation. Prerequisites are sufficient differences in training status and sufficient intensity of exercise test conditions.
Brain function was examined in adult cattle after conventional captive bolt stunning or shechita slaughter, using eight animals in each treatment. The times to loss of evoked responses (visual and somatosensory) and spontaneous activity in the electro-corticogram were used to determine the onset of brain failure. Captive bolt stunning followed by sticking one minute later resulted in immediate and irreversible loss of evoked responses after the stun. Spontaneous cortical activity was lost before sticking in three animals, and in an average of 10 seconds after sticking in the remaining five animals. The duration of brain function after shechita was very variable, and particularly contrasted with captive bolt stunning with respect to the effects on evoked responses. These were lost between 20 and 126 seconds (means of 77 seconds for somatosensory and 55 seconds for visual evoked responses) and spontaneous activity was lost between 19 and 113 seconds (mean 75 seconds) after slaughter.
The shortening of the time interval between the onset of oestrus and ovulation in sows by the transcervical administration of seminal plasma was investigated in 23 German Landrace gilts, using the technique of single horn infusions (Mariensee model) in combination with the transcutaneous sonographic monitoring of ovaries. Preparative surgery comprised the detachment of the left uterine horn from the corpus, leaving the caudal end open to the peritoneal cavity but sealing the corpus wound. The left ovary was loosely tied to the ventral abdominal wall for better sonographic distinction. The animals were used in two to four consecutive cycles. After detection of oestrus by the teaser boar, the patent (right) horns were filled by transcervical infusion of 100 ml of a variety of test solutions. Ovulation was probed by transcutaneous sonography at intervals of 4 h thereafter. Native seminal plasma provoked ovulation in the ipsilateral ovary of the treated horn 10.7 h earlier than in the contralateral ovary. This effect was reduced to 7.3 h after charcoal treatment of seminal plasma; addition of 10 micrograms oestradiol restored the effect in full, while 10 micrograms of oestradiol in PBS shortened the time interval to only 3.3 h versus the control ovary. Little effect was seen with oestrone sulfate, none with prostaglandins in PBS or with PBS alone. The preliminary characterization of the nonsteroidal component of seminal plasma advancing ipsilateral ovulation after transcervical infusion suggests a proteinaceous nature. The activity resides in the 1-10 kDa fraction separated by ultrafiltration and is lost after treatment with pronase.
The influence of a transcervical infusion of seminal plasma on preovulatory LH profiles and the advancement of ovulation after seminal plasma infusion for different times during oestrus were investigated using the single uterine horn infusion technique (Mariensee model), in combination with transcutaneous sonographic monitoring of the ovaries. Preparative surgery in 23 German Landrace gilts comprised the detachment of the left uterine horn from the corpus, leaving the caudal end open to the peritoneal cavity but sealing the corpus wound. In six gilts fitted with a permanent jugular vein catheter the patent horns were administered a transcervical infusion of seminal plasma (n = 5 cycles) or PBS (n = 4 cycles) immediately after the detection of oestrus by a teaser boar. In addition, 17 non-catheterized gilts received infusions of seminal plasma either 0 h (n = 3 gilts), 16 h (n = 7 gilts) or 24 h (n = 7 gilts) after the detection of oestrus. Seminal plasma infusion at the onset of oestrus provoked ovulation in the ipsilateral ovary of the treated horn 8.5 +/- 0.9 h earlier than in the contralateral (control) ovary. Seminal plasma did not influence the LH profile compared with PBS (P > 0.05), but shortened the interval between the LH peak and ipsilateral ovulation to 23.4 +/- 4.0 h compared with 31.8 +/- 3.4 h in the contralateral ovulation (P < or = 0.01). Infusion 16 h after the onset of oestrus reduced the effect to 4.6 +/- 3.8 h with a wide range of 0-8 h (P < 0.01). The effect was more pronounced in gilts with long intervals between the onset of oestrus and contralateral ovulation compared with earlier ovulation on the control ovary. Seminal plasma infusion less than 16 h before contralateral ovulation and 24 h after the detection of oestrus had no effect. It is concluded that transcervical infusion of seminal plasma early in oestrus synchronizes the variable intervals between the onset of oestrus and ovulation in sows by a locally active mechanism.
Abstract. Within the scope of a growth study fattening, carcass and meat quality traits of MHS gene carriers (Nn) and homozygous negative (NN) castrated male pigs (n=96) kept under two different feeding systems were investigated. The experimental group was intensively fed during the whole fattening period (age 10 to 26 weeks). According to feeding recommendations for barrows, the control group was also fed intensively from 10th to 17th week (growth phase) while feed was restricted from 18th to 26th week (finishing phase). As expected, feeding system affected fattening performance significantly. Intensively fed pigs showed a higher daily feed intake in the finishing phase and in the complete fattening period while no differences could be found in the growth phase. Daily gain was higher in the intensive group than in control during the finishing phase and complete fattening period (Δ = 285 g and Δ = 125 g, resp). Feed conversion ratio was superior in restricted feeding: intensively fed pigs took 230 g more feed/kg live weight. NN pigs had a higher feed intake and higher daily gain than Nn genotypes. Carcass quality was also influenced by feeding system: pigs of the experimental group which were on average 14.4 kg heavier than those of the control group had clearly more backfat and percentage of lean was significantly lower. A significant effect of MHS genotype on leanness was not observed. Within intensive feeding system Nn pigs tended to be leaner than NN pigs. In meat quality significant differences between feeding groups were found only for electrical conductivity and for intramuscular fat. For both traits higher values were measured in the experimental group. But meat quality was clearly affected by MHS genotype: in gene carriers significantly lower pH1 values and higher conductivity after 24 h were found in loin and ham. In tendency, intensively fed NN genotypes had a higher intramuscular fat content than intensively fed Nn pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.