We previously cloned cDNAs for all the members (A, B and C) of Xenopus aldolase gene family, and using in vitro transcribed RNAs as references, performed quantitative studies of the expression of three aldolase mRNAs in embryos and adult tissues. A Xenopus egg contains ca. 60 pg aldolase A mRNA and ca. 45 pg aldolase C mRNA, but contains only ca. 1.5 pg aldolase B mRNA. The percent composition of three aldolase mRNAs (A:B:C) changes from 56:1.5:42.5 (fertilized egg) to 54:10:36 (gastrula), to 71:14.5:14.5 (neurula) and to 73:20:7 (tadpole) during development. These results are compatible with the previous results of zymogram analysis that aldolases A and C are the major aldolases in early embryos, whose development proceeds depending on yolk as the only energy source. Aldolase B mRNA is expressed only late in development in tissues such as pronephros, liver rudiment and proctodeum which are necessary for the future dietary fructose metabolism, and the expression pattern is consistent to that in adult tissues. We also show that three aldolase genes are localized on different chromosomes as single copy genes.
We cloned cDNAs for Xenopus aldolases A, B and C. These three aldolase genes are localized on different chromosomes as a single copy gene. In the adult, the aldolase A gene is expressed extensively in muscle tissues, whereas the aldolase B gene is expressed strongly in kidney, liver, stomach and intestine, while the aldolase C gene is expressed in brain, heart and ovary. In oocytes aldolase A and C mRNAs, but not aldolase B mRNA, are extensively transcribed. Thus, aldolase A and C mRNAs, but not B mRNA, occur abundantly in eggs as maternal mRNAs, and strong expression of aldolase B mRNA is seen only after the late neurula stage. We conclude that aldolase A and C mRNAs are major aldolase mRNAs in early stages of Xenopus embryogenesis which proceeds utilizing yolk as the only energy source. aldolase B mRNA, on the other hand, is expressed only later in development in tissues which are required for dietary fructose metabolism. We also isolated the Xenopus aldolase C genomic gene (ca. 12 kb) and found that its promoter (ca. 2 kb) contains regions necessary for tissue-specific expression and also a GC rich region which is essential for basal transcriptional activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.