Aims/Introduction Sphingolipids, such as ceramides and sphingosine, are involved in the pathogenesis of diabetes; however, the modulation of urinary sphingolipids in diabetic nephropathy has not been fully elucidated. Therefore, we aimed to develop a simultaneous measurement system for urinary sphingolipids using liquid chromatography‐tandem mass spectrometry and to elucidate the modulation of urinary sphingolipids in diabetic nephropathy. Materials and Methods We established a simultaneous measurement system for the urinary sphingosine, dihydrosphingosine, and six ceramide species (Cer d18:1/16:0, Cer d18:1/18:0, Cer d18:1/18:1, Cer d18:1/20:0, Cer d18:1/22:0 and Cer d18:1/24:0), and we examined the urinary sphingolipids in 64 type 2 diabetes patients and 15 control participants. Results The established measurement system for the urinary sphingolipids showed good precision for Cer d18:1/16:0, Cer d18:1/20:0, Cer d18:1/22:0 and Cer d18:1/24:0. We observed that the urinary levels of Cer d18:1/16:0, Cer d18:1/18:0, Cer d18:1/20:0, Cer d18:1/22:0 and Cer d18:1/24:0 were elevated in patients with stage 3 of diabetic nephropathy, and were correlated with urinary biomarkers, such as albumin and N‐acetyl‐β‐d‐glucosaminidase, and sediment score. Conclusions Our method is useful for the measurement of ceramide in urine specimens, and urinary ceramides might be associated with the pathological condition of diabetic nephropathy, such as renal tubular injury.
A quantification system for lysophospholipids (lysoPL) was developed, especially for blood samples, using liquid chromatography–tandem mass spectrometry (LC–MS/MS). However, the lysoPL measurement in cerebrospinal fluid (CSF) has not been validated. Therefore, the present study aimed to validate the lysoPL measurement using CSF samples and to elucidate the possible clinical significance of the lysoPL measurement in CSF. For the validation, we observed a good precision and linearity in a sample with high lysoPL levels. The concentrations of lysoPL changed after incubation but the changes were smaller than those observed for serum samples. Moreover, we observed that the CSF levels of 16:0, 18:0 lysophosphatidylcholine, and 18:0, 18:1, and 20:4 lysophosphatidic acid were significantly higher in subjects with central nervous system invasion caused by hematological malignancies or carcinoma than in subjects with no abnormal CSF test results. In conclusion, an LC–MS/MS quantification system for lysoPL in CSF might be useful and could be applied to clinical laboratory testing.
Lysophosphatidylinositol (LPI) is a glycero-lysophospholipid and a natural agonist against GPR55. The roles of the LPI/GPR55 axis in the pathogenesis of inflammation have been controversial. In the present study, we attempted to elucidate the roles of the LPI/GPR55 axis in inflammation, especially the secretion of inflammatory cytokines, IL-6 and TNF-α from macrophages. We treated RAW264.7 cells and mouse peritoneal macrophages (MPMs) with LPI and observed that LPI induced the secretion of IL-6 and TNF-α from these cells, as well as the phosphorylation of p38. These responses were inhibited by treatment with CID16020046 (CID), an antagonist against GPR55, or SB202190, an inhibitor of p38 cascade or knockdown of GPR55 with siRNA. Treatment with CID or ML-193, another antagonist against GPR55, attenuated the elevation of inflammatory cytokines in the plasma or tissue of db/db mice and in a septic mouse model induced using lipopolysaccharide, suggesting contributions to the improvement of insulin resistance and protection against organ injuries by treatment with CID or ML-193, respectively. In human subjects, although the serum LPI levels were not different, the levels of LPI in the lipoprotein fractions were lower and the levels in the lipoprotein-depleted fractions were higher in subjects with diabetes. LPI bound to albumin induced the secretion of IL-6 and TNF-α from RAW264.7 cells to a greater degree than LPI bound to LDL or HDL.These results suggest that LPI, especially the albumin-bound form, induced inflammatory cytokines depending on the GPR55/p38 pathway, which might contribute to the pathogenesis of obesity-induced inflammation and acute inflammation.
Objectives Sphingolipids have been demonstrated to be involved in many human diseases. However, measurement of sphingolipids, especially of sphingosine 1-phosphate (S1P) and dihydro-sphingosine 1-phosphate (dhS1P), in blood samples requires strict sampling, since blood cells easily secrete these substances during sampling and storage, making it difficult to introduce measurement of sphingolipids in clinical laboratory medicine. On the other hand, cerebrospinal fluid (CSF) contains few blood cells. Therefore, we attempted to establish a system based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the measurement of sphingolipids in the CSF, and applied it for the diagnosis of carcinomatous meningitis. Methods We developed and validated a LC-MS/MS-based measurement system for S1P and dhS1P and for ceramides and sphingosines, used this system to measure the levels of these sphingolipids in the CSF collected from the subjects with cancerous meningitis, and compared the levels with those in normal routine CSF samples. Results Both the measurement systems for S1P/dhS1P and for ceramides/sphingosines provided precision with the coefficient of variation below 20% for sphingolipids in the CSF samples. We also confirmed that the levels of S1P, as well as ceramides/sphingosines, in the CSF samples did not increase after the sampling. In the CSF samples collected from patients with cancerous meningitis, we observed that the ratio of S1P to ceramides/sphingosine and that of dhS1P to dihydro-sphingosine were higher than those in control samples. Conclusions We established and validated a measurement system for sphingolipids in the CSF. The system offers promise for being introduced into clinical laboratory testing.
Background A heterogeneous clinical phenotype is a characteristic of coronavirus disease 2019 (COVID‐19). Therefore, investigating biomarkers associated with disease severity is important for understanding the mechanisms responsible for this heterogeneity and for developing novel agents to prevent critical conditions. This study aimed to elucidate the modulations of sphingolipids and glycerophospholipids, which have been shown to possess potent biological properties. Methods We measured the serum sphingolipid and glycerophospholipid levels in a total of 887 samples from 215 COVID‐19 subjects, plus 115 control subjects without infectious diseases and 109 subjects with infectious diseases other than COVID‐19. Results We observed the dynamic modulations of sphingolipids and glycerophospholipids in the serum of COVID‐19 subjects, depending on the time course and severity. The elevation of C16:0 ceramide and lysophosphatidylinositol and decreases in C18:1 ceramide, dihydrosphingosine, lysophosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol were specific to COVID‐19. Regarding the association with maximum severity, phosphatidylinositol and phosphatidylcholine species with long unsaturated acyl chains were negatively associated, while lysophosphatidylethanolamine and phosphatidylethanolamine were positively associated with maximum severity during the early phase. Lysophosphatidylcholine and phosphatidylcholine had strong negative correlations with CRP, while phosphatidylethanolamine had strong positive ones. C16:0 ceramide, lysophosphatidylcholine, phosphatidylcholine and phosphatidylethanolamine species with long unsaturated acyl chains had negative correlations with D‐dimer, while phosphatidylethanolamine species with short acyl chains and phosphatidylinositol had positive ones. Several species of phosphatidylcholine, phosphatidylethanolamine and sphingomyelin might serve as better biomarkers for predicting severe COVID‐19 during the early phase than CRP and D‐dimer. Compared with the lipid modulations seen in mice treated with lipopolysaccharide, tissue factor, or histone, the lipid modulations observed in severe COVID‐19 were most akin to those in mice administered lipopolysaccharide. Conclusion A better understanding of the disturbances in sphingolipids and glycerophospholipids observed in this study will prompt further investigation to develop laboratory testing for predicting maximum severity and/or novel agents to suppress the aggravation of COVID‐19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.