Breakfast skipping has become an increasing trend in the modern lifestyle and may play a role in obesity and type 2 diabetes. In our previous studies in healthy young individuals, a single incident of breakfast skipping increased the overall 24-h blood glucose and elevated the postprandial glycaemic response after lunch; however, it was difficult to determine whether this response was due to breakfast omission or the extra energy (i.e. lunch plus breakfast contents). The present study aimed to assess the postprandial glycaemic response and to measure their hormone levels when healthy young individuals had identical lunch and dinner, and the 24-h average blood glucose as a secondary outcome. Nine healthy young men (19−24 years) participated in two-meal trials: with breakfast (three-meal condition) or without breakfast (breakfast skipping condition). During the meals, each individual’s blood glucose was continuously monitored. Skipping breakfast resulted in a significantly higher (P < 0·001) glycaemic response after lunch as compared with the glycaemic response after an identical lunch when breakfast was consumed. Despite the difference in the total energy intake, the 24-h average blood glucose was similar between the two-meal conditions (P = 0·179). Plasma NEFA level was significantly higher (P < 0·05) after lunch when breakfast was omitted, and NEFA level positively correlated with the postprandial glycaemic response (r 0·631, P < 0·01). In conclusion, a single incident of breakfast skipping increases postprandial hyperglycaemia, and associated impaired insulin response, after lunch. The present study showed that skipping breakfast influences glucose regulation even in healthy young individuals.
Aim To examine whether mild early time-restricted eating (eating dinner at 18:00 vs. at 21:00) improves 24-h blood glucose levels and postprandial lipid metabolism in healthy adults. Methods Twelve participants (2 males and 10 females) were included in the study. In this 3-day (until the morning of day 3) randomized crossover study, two different conditions were tested: eating a late dinner (at 21:00) or an early dinner (at 18:00). During the experimental period, blood glucose levels were evaluated by each participant wearing a continuous blood glucose measuring device. Metabolic measurements were performed using the indirect calorimetry method on the morning of day 3. The study was conducted over three days; day 1 was excluded from the analysis to adjust for the effects of the previous day’s meal, and only data from the mornings of days 2 and 3 were used for the analysis. Results Significant differences were observed in mean 24-h blood glucose levels on day 2 between the two groups (p = 0.034). There was a significant decrease in the postprandial respiratory quotient 30 min and 60 min after breakfast on day 3 in the early dinner group compared with the late dinner group (p < 0.05). Conclusion Despite a difference of only 3 h, eating dinner early (at 18:00) has a positive effect on blood glucose level fluctuation and substrate oxidation compared with eating dinner late (at 21:00).
The current study examined how body weight and lifestyle fluctuate between spring, autumn, and winter in Japanese female college students and whether weight gain is associated with changes in physical activity, food intake, and sleep. We measured body weight and lifestyle factors in 31 participants from May 2017 to January 2018. Weight was measured daily in participants’ homes. Physical activity and sleep were measured for three weeks in three seasons using two accelerometers. Food intake was assessed using a validated food frequency questionnaire. Body weight significantly decreased in autumn compared with spring (p < 0.001). Body weight in winter tended to increase compared with autumn (p = 0.052). Step counts and energy intake were significantly different between seasons (p < 0.05). Total time in bed was not significantly different between seasons. In comparisons of changes in lifestyle patterns from autumn to winter between the weight gain (≥0.5 kg) and weight maintenance groups, seasonal changes in lifestyle factors were not significantly different between groups (p > 0.05). The results indicated that body weight and lifestyle were affected by seasonal variability in female college students, but no significant relationships existed between seasonal weight gain and changes in lifestyle patterns.
Recent studies have reported that meal timing may play an important role in weight regulation, however it is unknown whether the timing of meals is related to the amount of weight loss. This study aimed to examine the relationship between indices of meal timing and weight loss during weight loss intervention in adults. A 12-week weight loss support program was conducted for 97 adults (age: 47.6 ± 8.3 years, BMI: 25.4 ± 3.7 kg/m2). After the program, body weight decreased by −3.0 ± 2.7%. Only the start of the eating window was positively correlated with the weight change rate in both sexes (men: r = 0.321, p = 0.022; women: r = 0.360, p = 0.014). The participants were divided into two groups based on the start of the eating window as follows: the early group (6:48 ± 0:21 AM) and the late group (8:11 ± 1:05 AM). The weight loss rate in the early group was significantly higher (−3.8 ± 2.7%) than that in the late group (−2.2 ± 2.5%). The present results showed that the start of the early eating window was associated with weight loss and suggested paying attention to meal timing when doing weight loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.