The C2 domain is a Ca2+-binding motif of approximately 130 residues in length originally identified in the Ca2+-dependent isoforms of protein kinase C. Single and multiple copies of C2 domains have been identified in a growing number of eukaryotic signalling proteins that interact with cellular membranes and mediate a broad array of critical intracellular processes, including membrane trafficking, the generation of lipid-second messengers, activation of GTPases, and the control of protein phosphorylation. As a group, C2 domains display the remarkable property of binding a variety of different ligands and substrates, including Ca2+, phospholipids, inositol polyphosphates, and intracellular proteins. Expanding this functional diversity is the fact that not all proteins containing C2 domains are regulated by Ca2+, suggesting that some C2 domains may play a purely structural role or may have lost the ability to bind Ca2+. The present review summarizes the information currently available regarding the structure and function of the C2 domain and provides a novel sequence alignment of 65 C2 domain primary structures. This alignment predicts that C2 domains form two distinct topological folds, illustrated by the recent crystal structures of C2 domains from synaptotagmin I and phosphoinositide-specific phospholipase C-61, respectively. The alignment highlights residues that may be critical to the C2 domain fold or required for Ca2+ binding and regulation.
The C2 domain is a Ca2+-dependent, membrane-targeting motif originally discovered in protein kinase C and recently identified in numerous eukaryotic signal-transducing proteins, including cytosolic phospholipase A2 (cPLA2) of the vertebrate inflammation pathway. Intracellular Ca2+ signals recruit the C2 domain of cPLA2 to cellular membranes where the enzymatic domain hydrolyzes specific lipids to release arachidonic acid, thereby initiating the inflammatory response. Equilibrium binding and stopped-flow kinetic experiments reveal that the C2 domain of human cPLA2 binds two Ca2+ ions with positive cooperativity, yielding a conformational change and membrane docking. When Ca2+ is removed, the two Ca2+ ions dissociate rapidly and virtually simultaneously from the isolated domain in solution. In contrast, the Ca2+-binding sites become occluded in the membrane-bound complex such that Ca2+ binding and dissociation are slowed. Dissociation of the two Ca2+ ions from the membrane-bound domain is an ordered sequential process, and release of the domain from the membrane is simultaneous with dissociation of the second ion. Thus, the Ca2+-signaling cycle of the C2 domain passes through an active, membrane-bound state possessing two occluded Ca2+ ions, one of which is essential for maintenance of the protein-membrane complex.
The C2 domain is a ubiquitous Ca(2+)-binding motif that triggers the membrane docking of many key signaling proteins during intracellular Ca(2+) signals. Site-directed spin labeling was carried out on the C2 domain of cytosolic phospholipase A(2) in order to determine the depth of penetration and orientation of the domain at the membrane interface. Membrane depth parameters, Phi, were obtained by EPR spectroscopy for a series of selectively spin-labeled C2 domain cysteine mutants, and for spin-labeled lipids and spin-labeled bacteriorhodopsin cysteine mutants. Values of Phi were combined with several other constraints, including the solution NMR structure, to generate a model for the position of the C2 domain at the membrane interface. This modeling yielded an empirical expression for Phi, which for the first time defines its behavior from the bulk aqueous phase to the center of the lipid bilayer. In this model, the backbones of both the first and third Ca(2+)-binding loops are inserted approximately 10 A into the bilayer, with residues inserted as deep as 15 A. The backbone of the second Ca(2+)-binding loop is positioned near the lipid phosphate, and the two beta-sheets of the C2 domain are oriented so that the individual strands make angles of 30-45 degrees with respect to the bilayer surface. Upon membrane docking, spin labels in the Ca(2+)-binding loops exhibit decreases in local motion, suggesting either changes in tertiary contacts due to protein conformational changes and/or interactions with lipid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.