An Alu insertion (I)/deletion (D) polymorphism in the angiotensin I converting enzyme (ACE) gene has been associated with ACE activity. Opposing effects on elite athletic performance have been proposed for the I and D alleles; while the D allele favours improved endurance ability, the I allele promotes more power-orientated events. We tested this hypothesis by determining the frequency of ACE ID alleles amongst 121 Israeli top-level athletes classified by their sporting discipline (marathon runners or sprinters). Genotyping for ACE ID was performed using polymerase chain reaction on DNA from leucocytes. The ACE genotype and allele frequencies were compared with those of 247 healthy individuals. Allele and genotype frequencies differed significantly between the groups. The frequency of the D allele was 0.77 in the marathon runners, 0.66 in the control subjects (P = 0.01) and 0.57 in the sprinters (P = 0.002). The ACE DD genotype was more prevalent among the endurance athletes (0.62) than among the control subjects (0.43, P = 0.004) and the power athletes (0.34, P = 0.004). In the group of elite athletes, the odds ratio of ACE DD genotype being an endurance athlete was 3.26 (95% confidence interval 1.49-7.11), and of ACE II genotype was 0.41 (95% confidence interval 0.14-1.19). We conclude that in Israeli elite marathon runners the frequency of the ACE D allele and ACE DD genotype seems to be higher than in sprinters, suggesting a positive association between the D allele and the likelihood of being an elite endurance athlete in some ethnic groups.
Unaccustomed exercise may cause muscle breakdown with marked increase in serum creatine kinase (CK) activity. The skeletal muscle renin-angiotensin system (RAS) plays an important role in exercise metabolism and tissue injury. A functional insertion (I)/deletion (D) polymorphism in the angiotensin I-converting enzyme (ACE) gene (rs4646994) has been associated with ACE activity. We hypothesized that ACE ID genotype may contribute to the wide variability in individuals' CK response to a given exercise. Young individuals performed maximal eccentric contractions of the elbow flexor muscles. Pre- and postexercise CK activity was determined. ACE genotype was significantly associated with postexercise CK increase and peak CK activity. Individuals harboring one or more of the I allele had a greater increase and higher peak CK values than individuals with the DD genotype. This response was dose-dependent (mean +/- SE U/L: II, 8,882 +/- 2,362; ID, 4,454 +/- 1,105; DD, 2,937 +/- 753, ANOVA, P = 0.02; P = 0.009 for linear trend). Multivariate stepwise regression analysis, which included age, sex, body mass index, and genotype subtypes, revealed that ACE genotype was the most powerful independent determinant of peak CK activity (adjusted odds ratio 1.3, 95% confidence interval 1.03-1.64, P = 0.02). In conclusion, we indicate a positive association of the ACE ID genotype with CK response to strenuous exercise. We suggest that the II genotype imposes increased risk for developing muscle damage, whereas the DD genotype may have protective effects. These findings support the role of local RAS in the regulation of exertional muscle injury.
Objectives: Angiotensin II plays a key role in the pathophysiology of heart failure (HF). This study examined the angiotensin II type 1 receptor (AT1R) polymorphism in patients with systolic HF and its relation to clinical manifestations and patient outcome. Methods: We genotyped 134 patients with HF and reduced systolic function for the AT1R A1166C genotype using polymerase chain reaction and restriction fragment length polymorphism. We analyzed the relationship between the AT1R A1166C polymorphism and clinical, electrocardiographic, echocardiographic and laboratory parameters in patients with ischemic and non-ischemic etiology and examined the relation between the AT1R genotype and long-term (30 months) patient survival. Results: In HF patients, frequency of the AT1R 1166C allele and specifically the CC genotype was similar to the general population, but associated with an ischemic and not a non-ischemic etiology (p = 0.02). The CC genotype was associated with more advanced disease and more severe abnormalities of renal function (p = 0.008). Survival analysis showed that AT1R CC homozygous patients had significantly higher mortality (p = 0.008; adjusted odds ratio for mortality 6.35, 95% confidence interval 1.49–11.21, p = 0.01). Conclusion: The CC AT1R genotype was associated with poor prognostic markers and increased mortality. The findings support the principle of genome-based therapies in the future treatment of HF patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.